Recall: \(f \) is integrable over \(E \) if
\[
\int_E f = \int_E f^+ - \int_E f^-
\]
is defined and finite.

Prop 23.1: Let \(f \) be a measurable function defined on a measurable set \(E \). Then \(f \) is integrable in \(E \) if and only if \(|f| \) is integrable in \(E \).
If they are both integrable, then:
\[
\left| \int_E f \right| \leq \int_E |f|. \quad (1)
\]

Proof: Assume that \(f \) is integrable on \(E \). Then, by Remark 22.1, \(f^+ \) and \(f^- \) are integrable on \(E \). Thus by Th 21.1 (ii), \(f^+ + f^- \) is integrable on \(E \). But
\[
|f| = f^+ + f^- \quad (2)
\]
Hence, \(|f| \) is integrable. Assume that \(|f| \) is integrable on \(E \).

From (2), \(0 \leq f^+ \leq |f| \). Hence, by Th 21.1:
\[
0 \leq \int_E f^+ \leq \int_E |f| < +\infty
\]
Thus \(f^+ \) is integrable. Similarly we obtain that \(f^- \) is integrable and so is \(f \) by Remark 22.1.

(1) follows from Th 22. (iii) and (i). Indeed:
\[
-\int f \leq f \leq \int |f|
\]
Thus
\[
-\int |f| \leq \int f \leq \int |f|
\]
The latter implies (1).

Therefore, for the Lebesgue integral integrability and absolute integrability are equivalent. It is not so for the Riemann integral.
Ex: Define $f : [0, 1] \rightarrow \mathbb{R}$ as
$$f(x) = \begin{cases} 1, & x \in \mathbb{Q} \\ -1, & x \in [0, 1] \setminus \mathbb{Q} \end{cases}.$$ f is not Riemann integrable in $[0, 1]$ but $|f| \equiv 1$ is. f and $|f|$ are both Lebesgue integrable on $[0, 1]$ with the integral 0.

Ex: Consider $f : [1, +\infty) \rightarrow \mathbb{R}$ defined as:
$$f(x) = \frac{(-1)^{n+1}}{n}, \quad x \in [n, n+1), \quad n = 1, 2, \ldots.$$ It is easy to prove that
$$\lim_{x \to +\infty} \int_{n}^{n+1} f(x) \, dx = \sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n} < +\infty.$$ Yet, $\int_{1}^{+\infty} f(x) \, dx = \sum_{n=1}^{+\infty} \frac{1}{n} = +\infty$. Thus, $|f|$ is not Lebesgue integrable in $[1, +\infty)$ and f is not either. Hence, for functions which are not necessarily non-negative, summability in the sense of Riemann and summability in the sense of Lebesgue are different.

Prop 23.2 Let f be integrable over E, g be measurable and defined on E. If
$$|g| \leq f \text{ a.e. on } E,$$
then g is integrable on E.

Proof: By Th 21.1:
$$0 \leq \int_{E} |g| \leq \int_{E} f < +\infty.$$ So $|g|$ is integrable and, by Prop 23.1, so is g.

Lemma 23.1: Let $\{a_n\}_{n=1}^{\infty}$ be a sequence from \mathbb{R}, $c \in \mathbb{R}$. Then
(a) $\lim (c - a_n) = c - \lim a_n$ \quad \text{(b)} $\lim (c + a_n) = c + \lim a_n$.

Proof: Easy from Th 14.3.
Theorem 23.1 (The Lebesgue Dominated Convergence Theorem): Let \(g \) be integrable over \(E \). Let \(f_n, n=1,2,\ldots, \) be measurable functions defined on \(E \) such that:

\[
1_{f_n} \leq g \quad \text{on } E \quad \text{for } n=1,2,\ldots \quad (3)
\]

Assume that for some function \(f \) defined on \(E \) we have:

\[
f_n \rightarrow f \quad \text{a.e. on } E \quad \quad (4)
\]

Then \(f, f_n, n=1,2,\ldots \), are integrable on \(E \) and

\[
\int_E f = \lim_{n \to \infty} \int_E f_n. \quad (5)
\]

Proof: \(f \) is measurable as an a.e. limit of measurable functions.

By Prop. 23.2, \(f_n \) are all integrable on \(E \) for \(n=1,2,\ldots \). Observe that \(1_{f_n} \rightarrow 1_f \) a.e. on \(E \) by (4). Thus from (3):

\[
1_f \leq g \quad \text{a.e. on } E.
\]

By Prop 23.2, \(f \) is integrable on \(E \). To prove (5) observe that by (3):

\[
-g \leq f_n \leq g \quad \text{on } E \quad \text{for } n=1,2,\ldots
\]

Hence:

\[
g - f_n \geq 0 \quad \text{and} \quad f_n + g \geq 0 \quad \text{on } E \quad \text{for } n=1,2,\ldots \quad (6)
\]

We have also:

\[
g - f_n \rightarrow g - f \quad \text{a.e. on } E \quad , \quad f_n + g \rightarrow f + g \quad \text{a.e. on } E \quad (7)
\]

By (6) and (7) we can apply Fatou's Lemma to both sequences.

We obtain:

\[
\int_E (g - f) \leq \liminf_{n \to \infty} \int_E (g - f_n) = \lim_{n \to \infty} \int_E (g - f), \quad (\text{Th 22.1, F.L.})
\]

\[
\int_E (g - f) = \int_E g - \int_E f \leq \lim_{n \to \infty} \int_E (g - f_n) = \lim_{n \to \infty} \int_E (g - f_n).
\]
From Lemma 23.1:

\[\int_E q - \int_E f \leq \int_E q - \lim_{n \to \infty} \int_E f_n. \]

Thus:

\[\int_E f \geq \lim_{n \to \infty} \int_E f_n. \quad (8) \]

Applying Fatou's Lemma to \(g + f_n \), we obtain:

\[\int_E (g + f) = \int_E g + \int_E f \leq \lim_{n \to \infty} \int_E (g + f_n) = \lim_{n \to \infty} (\int_E g + \int_E f_n). \]

By Lemma 23.1:

\[\int_E g + \int_E f \leq \int_E g + \lim_{n \to \infty} \int_E f_n. \]

Thus:

\[\int_E f \leq \lim_{n \to \infty} \int_E f_n. \quad (9). \]

(9) and (8) give:

\[\int_E f \leq \lim_{n \to \infty} \int_E f_n \leq \lim_{n \to \infty} \int_E f_n \leq \int_E f. \]

The latter implies (5).

\[\square \]

Prop 23.3: Th 23.1 remains valid for extended real-valued functions \(f, f_n, g, n = 1, 2, \ldots \) with the assumption

\[|f_n| \leq g \text{ on } E \text{ for } n = 1, 2, \ldots \]

replaced by

\[|f_n| \leq g \text{ a.e. on } E. \]

\[\triangleq \]