Edge-Rooted Forests and α-Invariant of Cone Graphs

Woong Kook

Department of Mathematics, University of Rhode Island, Kingston, RI 02881, U.S.A.
email: andrewk@math.uri.edu

Abstract. We define the α-invariant of a finite graph G to be $\alpha(G) := T_{M(G)}(0, 1)$ where $T_{M(G)}(x, y)$ is the Tutte polynomial of the cycle matroid $M(G)$ of G. The cone \hat{G} on a graph G is obtained by adjoining a new vertex p and then joining each vertex of G to p by a single edge. In this paper we show that $\alpha(\hat{G})$ is the cardinality of the set of all edge-rooted forests in the base graph G. We will apply this result to compute the α-invariants of the complete graphs K_n and the wheels W_n where a wheel is a cone on a circuit.

Key words. Tutte-Grothendieck invariants, cycle matroid of graphs, edge-rooted forests

1. Introduction

Given a finite graph G, let $T_{M(G)}(x, y)$ be the Tutte polynomial of its cycle matroid $M(G)$. We define the α-invariant of G to be Tutte-Grothendieck invariant of $M(G)$ given by the evaluation of $T_{M(G)}(x, y)$ at $(x, y) = (0, 1)$, i.e., $\alpha(G) := T_{M(G)}(0, 1)$. Recall that for a matroid M in general, $T_M(0, 1)$ equals the unsigned reduced Euler number of the independence complex of M. (Refer to [2] for Tutte polynomials in general and [1] for definitions and results concerning matroid complexes.) Hence if G is connected and has $n + 1$ vertices, and if we let f_i be the number of spanning forests with i edges in G, then we may also define $\alpha(G)$ as

$$\alpha(G) := \sum_{0 \leq i \leq n} (-1)^{n-i} f_i.$$

In this paper we will examine α-invariants of cone graphs (see section 3 for definition). For example, the complete graph K_{n+1} ($n \geq 1$) is the cone on K_n and the wheel W_n of order n ($n \geq 1$) is the cone on the circuit C_n of length n. Previously, $\alpha(K_n)$ has been considered by Kook [3] in 1996 and by Novik, Postnikov, and Sturmfels [4] in 2001. In [3], $\alpha(K_n)$ was computed as the rank of the reduced homology group for the independence complex of $M(K_n)$. In [4], $\alpha(K_n)$ was described in terms of the Hermite polynomials, a generating function for partial matchings (degree 1 subgraphs) in a graph.

The main theorem of this paper (Theorem 1. in section 3) is a simple and elegant combinatorial interpretation for the α-invariant of cones graphs in general; for the cone \hat{G} on any finite graph G, $\alpha(\hat{G})$ is the number of edge-rooted forests in G (see section 2 for definition). Moreover, the proof of the main theorem is purely graph theoretic and combinatorial, and we will see that this interpretation arises naturally from the above
definition of α-invariants of graphs as an alternating sum. As a corollary we obtain a combinatorial interpretation for α(K_{n+1}) as the number of edge-rooted forests in K_n.

In the last section we will apply these results to derive a formula for α(W_n) and the exponential generating function for α(K_n). In this paper we consider finite graphs only.

2. Edge-rooted forests

Recall that a forest \(F \) in a graph \(G = (V(G), E(G)) \) is a subgraph of \(G \) such that each component of \(F \) is a tree. A forest \(F \) in \(G \) is called spanning if \(V(F) = V(G) \). We will denote the set of all spanning forests in \(G \) by \(\mathcal{I}(G) \), which may also be regarded as the set of independent sets of the cycle matroid of \(G \). (Refer to \([5]\) for the definition of cycle matroid of graphs.) The rank of \(F \in \mathcal{I}(G) \) is the number \(|E(F)| \) of edges in \(F \).

Given \(F \in \mathcal{I}(G) \), let \(C(F) \) denote the set of its components. In particular every \(T \in C(F) \) is a tree. Note that \(T \) may be an isolated vertex. We define a spanning forest \(F \) in \(G \) to be none-isolated if each component \(T \in C(F) \) has at least one edge, that is, no \(T \in C(F) \) is an isolated vertex. We will denote the set of all none-isolated spanning forests in \(G \) by \(\hat{\mathcal{I}}(G) \).

Definition. For each \(F \in \hat{\mathcal{I}}(G) \) let \(E^*(F) := \prod_{T \in C(F)} E(T) \). The set of edge-rooted forests in \(G \), written \(\hat{\mathcal{F}}(G) \), is the following set of pairs:

\[
\hat{\mathcal{F}}(G) := \{(F, e^*) | F \in \hat{\mathcal{I}}(G) \text{ and } e^* \in E^*(F)\}.
\]

Given an edge-rooted forest \((F, e^*)\), \(F \) is called the support and \(e^* \) the edge-roots.

In other words, an edge-rooted forest in \(G \) is a none-isolated spanning forest \(F \) in \(G \) with one edge from each \(T \in C(F) \) marked as an edge-root.

It is clear that the number of edge-rooted forests with a given support \(F \in \hat{\mathcal{I}}(G) \) is \(|E^*(F)| \). Now suppose \(|C(F)| = m \). Since \(|E(T)| = |V(T)| - 1 \) when \(T \) is a tree, we have

\[
|E^*(F)| = \prod_{T \in C(F)} |E(T)| = \prod_{T \in C(F)} (|V(T)| - 1) = \sum_{n=0}^{m} (-1)^{m-n} \nu_n(F),
\]

where \(\nu_n(F) \) denotes the evaluation of \(n \)-th elementary symmetric polynomial in \(m \) variables with the \(m \) values \(|V(T)| \) for \(T \in C(F) \).

Definition. Let \(F \in \mathcal{I}(G) \) and suppose \(C(F) = m \). The \(n \)-th vertex configuration space \(V^*(F)^{(n)} \) of \(F \) (\(0 \leq n \leq m \)) is the set of all \(n \)-subsets \(\{v_1, \ldots, v_n\} \subset V(F) \) such that \(v_i \) and \(v_j \) do not belong to the same component of \(F \) if \(i \neq j \). Equivalently, we define

\[
V^*(F)^{(n)} := \bigcup_{A \subset C(F), |A| = n} \left(\prod_{T \in A} V(T) \right),
\]

where the disjoint union is taken over all subsets of \(C(F) \) of cardinality \(n \).

Note that \(V^*(F)^{(0)} \) is a set with a single element, the empty set, hence \(|V^*(F)^{(0)}| = 1 \). It is also clear that \(|V^*(F)^{(n)}| = \nu_n(F) \) for all \(0 \leq n \leq m \). Now we summarize the above discussion in the following lemma whose proof is clear.
Lemma 1. Let $F \in \mathcal{I}(G)$ and suppose $|C(F)| = m$. Then the number of the edge-rooted forests supported by F is given by
\[
|E^*(F)| = \prod_{T \in C(F)} (|V(T)| - 1) = \sum_{0 \leq n \leq m} (-1)^{m-n}|V^*(F)^{(n)}|.
\]
Hence $|E^*(F)|$ is non-zero if and only if F is none-isolated. \hfill \Box

3. \(\alpha\)-invariant of cone graphs

Definition. The cone graph, or simply the cone, on a finite graph G is a graph \hat{G} obtained from G by adjoining a new vertex p called the cone point and then joining each vertex $v \in V(G)$ to p by a single edge. We will call G the base of \hat{G}. For example, the complete graph K_{n+1}, the wheel W_n of order n, and the fan \hat{P}_n of order n are cones on the bases K_n, the circuit C_n of length n, and the path P_n of length n, respectively ($n \geq 1$).

For a cone \hat{G}, the base G is naturally a subgraph of \hat{G}. Also the star $S(p)$ of p in \hat{G}, i.e., the cone on $V(G)$ with the cone point p, is a subgraph of \hat{G}. Clearly $E(G) \cap E(S(p)) = \phi$, and the following observation about \hat{G} will be important:
\[
\hat{G} = G \cup S(p).
\]
Accordingly, for any $F' \in \mathcal{I}(\hat{G})$, we have a decomposition $F' = (F' \cap G) \cup (F' \cap S(p))$; we will call $F' \cap G$ the support of F' and $F' \cap S(p)$ the suspenders of F', denoted by $S(p,F')$. The support of F' is a spanning forest in G and $S(p,F')$ is the star of p in F'.

Clearly the cone \hat{G} on any G is connected and the rank of its cycle matroid $M(\hat{G})$ is $r = |V(G)| = |V(F)|$ for any $F \in \mathcal{I}(G)$. Given an integer $i \in [0,r]$ and $F \in \mathcal{I}(G)$, let \mathcal{I}_i be the set of all rank i spanning forests in \hat{G}, and let $\mathcal{I}_{F,i}$ be the subset of \mathcal{I}_i consisting of those with the support F. Then we have $f_i = |\mathcal{I}_i|$ and define $f_{F,i} := |\mathcal{I}_{F,i}|$. Since the set $\{\mathcal{I}_{F,i} | F \in \mathcal{I}(G)\}$ partitions \mathcal{I}_i for any $i \in [0,r]$, we have
\[
f_i = \sum_{F \in \mathcal{I}(G)} f_{F,i}.
\]
Note that if $i < |E(F)|$, then $\mathcal{I}_{F,i}$ is empty and $f_{F,i} = 0$. The following lemma provides a crucial link between edge-rooted forests in G and $\alpha(\hat{G})$.

Lemma 2. Fix $F \in \mathcal{I}(G)$ and $i \in [|E(F)|,|V(F)|]$. For $n = i - |E(F)|$, we have
\[
f_{F,i} = |V^*(F)^{(n)}|.
\]
Proof. We will construct a bijection $\phi : \mathcal{I}_{F,i} \rightarrow V^*(F)^{(n)}$ for $n = i - |E(F)|$. Note that $F' \in \mathcal{I}_{F,i}$ is determined by its suspender $S(p,F')$ because its support F' is given. The number of edges in $S(p,F')$ is $|E(F') \setminus E(F)| = i - |E(F)| = n$, which is also the degree of p in F'. Furthermore no two edges in $S(p,F')$ are connected to the same component of the base F' because F' is a forest. Therefore the set of vertices in F' that are adjacent to p, which we denote by $N(p,F')$, is a subset of $V(F)$ of cardinality n such that no two vertices in $N(p,F')$ belong to the same component of F. Therefore $N(p,F') \in V^*(F)^{(n)}$. Conversely, given any $N \in V^*(F)^{(n)}$, it’s easy to see that $F \cup \hat{N}$, where \hat{N} is a cone on N with p as the cone point, is a spanning forest in \hat{G} with i edges and F as the base. Therefore the mapping $\phi : \mathcal{I}_{F,i} \rightarrow V^*(F)^{(n)}$ given by $\phi(F') = \hat{N}(p,F')$ is a bijection with its inverse $\psi : V^*(F)^{(n)} \rightarrow \mathcal{I}_{F,i}$ given by $\psi(N) = F \cup \hat{N}$. The proof is complete. \hfill \Box
We make important remarks on the range of \(i \) and \(n = i - |E(F)| \) in the above lemma. When \(i = |E(F)| \), we have \(n = 0 \) and \(I_{F,i} \) consists of \(F \) only. Therefore \(f_{F,i} = |V^*(F)^{(n)}| = 1 \). Now recall that the number of components of any forest \(F \) in general is given by \(|V(F)| - |E(F)| \). Therefore, when \(i = |V(F)| \), we have \(n = |C(F)| \), and \(V^*(F)^{(n)} \) is well-defined. Moreover, Since the rank of \(\mathcal{M}(\hat{G}) \) is \(|V(F)| \), \(f_{F,i} = 0 \) for all \(i \geq |V(F)| \).

Now we are ready to prove the main theorem of the paper.

Theorem 1. Let \(\hat{G} \) be the cone on a finite graph \(G \). Then \(\alpha(\hat{G}) \) is the number of edge-rooted forests in the base \(G \):

\[
\alpha(\hat{G}) = |\dot{\mathcal{F}}(G)|.
\]

Proof. Let \(r = |V(G)| = \text{rank of } \mathcal{M}(\hat{G}) \). Then we have

\[
\alpha(\hat{G}) = \sum_{0 \leq i \leq r} (-1)^{r-i} f_i
= \sum_{0 \leq i \leq r} (-1)^{r-i} \sum_{F \in \mathcal{I}(G)} f_{F,i}
= \sum_{0 \leq i \leq r} \sum_{F \in \mathcal{I}(G)} (-1)^{r-i} f_{F,i}
= \sum_{F \in \mathcal{I}(G)} \sum_{|E(F)| \leq i \leq r} (-1)^{r-i} f_{F,i},
\]

where the last equality is from the fact \(f_{F,i} = 0 \) when \(i < |E(F)| \) for all \(F \in \mathcal{I}(G) \). Now if we let \(n = i - |E(F)| \), then by Lemma 2, we have \(f_{F,i} = |V^*(F)^{(n)}| \), and we have \(r - i = |V(G)| - n - |E(F)| = |C(F)| - n \) by the remarks following Lemma 2. Therefore if we let \(m_F = |C(F)| \) for every \(F \in \mathcal{I}(G) \), then by Lemma 1. we have,

\[
\alpha(\hat{G}) = \sum_{F \in \mathcal{I}(G)} \sum_{0 \leq n \leq m_F} (-1)^{m_F-n}|V^*(F)^{(n)}| = \sum_{F \in \mathcal{I}(G)} |E^*(F)| = |\dot{\mathcal{F}}(G)|.
\]

The proof of the theorem is complete. \(\square \)

4. Examples: \(\alpha \)-invariants of wheels and complete graphs

Recall that a wheel \(W_n \) of order \(n \) is a cone on a circuit \(C_n \) of length \(n \).

Theorem 2. Let \(W_n \) be a wheel of order \(n \) (\(n \geq 1 \)). Then \(\alpha(W_n) = 2^n - 2 \).

Proof. Since \(W_n \) is a cone on a circuit \(C_n \) of length \(n \), it suffices to show that the number of edge-rooted spanning forests in \(C_n \) is \(2^n - 2 \). Note that edge-rooted spanning forests in \(C_n \) can be constructed in two steps as follows. First pick a positive even number of edges from \(C_n \) and assign to each of these edges a plus or minus sign in such a way that the signs will alternate as one goes around the circuit \(C_n \). Then we will get two edge-rooted spanning forests in \(C_n \), first one by marking those edges with plus signs as edge-roots and deleting those with minus signs, and then the second by doing the same thing with the signs switched. It’s clear that every edge-rooted forest in \(C_n \) can be obtained this way. Now since an \(n \)-set has \(2^{n-1} - 1 \) non-empty subsets of even cardinality and each of these subsets gives rise to two edge-rooted spanning forests in \(C_n \), the result follows. \(\square \)

Remark. If we pick an odd number of edges from \(C_n \) and try to construct an edge-rooted spanning forest as in the above proof, the outcome will be a forest with one of
the components having either no edge-root or two edge-roots. However, for a path \(P_n \) of length \(n \), a set of odd number of edges in \(P_n \) will correspond to an edge-rooted forest in \(P_n \); assign alternating signs to these edges starting with a plus and then mark those with plus signs as roots and delete those with minus signs as in the above proof. Therefore for the fan \(\tilde{P}_n \) of order \(n \), we have \(\alpha(\tilde{P}_n) = 2^{n-1} \) the number of odd-sized subsets of an \(n \)-set.

Theorem 3. Let \(K_n \) be the complete graph on \(n \) vertices \((n \geq 1)\). Then \(\alpha(K_1) = 1 \) and \(\alpha(K_{n+1}) \) is the number of edge-rooted forests in \(K_n \) for \(n \geq 1 \).

Proof. \(\alpha(K_1) = 1 \) is clear because for \(K_1 \) we have \(f_0 = 1 \) and \(f_i = 0 \) for all \(i > 0 \). Since \(K_{n+1} \) is a cone on \(K_n \) \((n \geq 1)\), the second statement of the theorem follows immediately from Theorem 1. \(\square \)

The exponential generating function for \(\alpha(K_{n+1}) \) \((n \geq 0)\) can be derived from this theorem as follows. A typical edge-rooted forest in \(K_n \) is obtained by choosing a partition \(\{B_1, B_2, \ldots, B_t\} \) of the vertex set \([n]\) \(\text{(in particular } |B_i| \geq 1 \text{ for all } i)\), and then constructing an edge-rooted tree in each block \(B_i \) \((1 \leq i \leq t)\). Therefore if we let \(\bar{\tau}(m) = (m-1)m^{m-2} \), which counts the number of edge-rooted trees on \(m \) vertices, we have

\[
\alpha(K_{n+1}) = \sum_{\{B_1, B_2, \ldots, B_t\} \vdash [n]} \bar{\tau}(|B_1|)\bar{\tau}(|B_2|)\cdots \bar{\tau}(|B_t|),
\]

where the sum ranges over all partitions \(\{B_1, B_2, \ldots, B_t\} \) of the set \([n]\). Since \(\alpha(K_1) = 1 \), it follows from [6, Theorem 5.1.6] that the exponential generating function for \(\alpha(K_{n+1}) \) \((n \geq 0)\) is

\[
\sum_{n \geq 0} \frac{\alpha(K_{n+1})}{n!} x^n = \exp(T(x)),
\]

where \(T(x) = \sum_{m \geq 2} \bar{\tau}(m)x^m/m! \).

Finally we want to make an interesting remark about the magnitude of \(\alpha(K_n) \): it has been observed, but not proved, that the ratio \(\alpha(K_n)/(n^{n-2}) \) approaches \(e^{-1/2} \) monotonically from below as \(n \) grows.

References

