MTH307 - HOMEWORK 9

Solutions to the questions in Section B should be submitted by the start of class on 12/06/18.

A. WARM-UP QUESTIONS

Question A.1. For the following relations, decide if they are reflexive, symmetric or transitive, and if they are equivalence relations.

- (i) \leq on \mathbb{R} .
- (ii) \neq on \mathbb{Z} .
- (iii) ~ on \mathbb{R}^2 given by $(x, y) \sim (u, v)$ if and only if $x^2 + y^2 = u^2 + v^2$.
- (iv) ~ on \mathbb{R} given by $x \sim y$ if and only if |x y| < 1.
- (v) ~ on \mathbb{Z} given by $x \sim y$ if and only if |x y| < 1.
- (vi) | (divides) on the set $\{1, 2, 3, 4, 5, 6\}$.
- (vii) \subseteq on the set $\mathcal{P}(\mathbb{R})$.
- (viii) ~ on \mathbb{Z} given by $x \sim y$ if and only if 5|(x-y).
- (ix) ~ on \mathbb{R} given by $x \sim y$ if and only if $xy \geq 0$.
- (x) ~ on \mathbb{R} given by $x \sim y$ if and only if xy > 0.

Question A.2. Prove that the following relations are equivalence relations, and then compute the given equivalence classes.

- (i) ~ on \mathbb{R} defined by $x \sim y$ if and only if $x^2 = y^2$. Find [0], [2] and [-3].
- (ii) ~ on \mathbb{R}^2 by $(x, y) \sim (u, v)$ if and only if $x^2 v = u^2 y$. Find [(1, 2)], [(0, 0)] and [(3, -1)].
- (iii) ~ on \mathbb{R} by $n \sim m$ if and only if $n m \in \mathbb{Z}$. Find [3], [0.5] and $[\pi]$.
- (iv) ~ on \mathbb{Z} by $n \sim m$ if and only if $3 \mid (n-m)$. Find [0], [1] and [2].
- (v) ~ on $\mathcal{P}(\mathbb{N})$ by $X \sim Y$ if and only if there exists a bijection $f: X \to Y$. Find $[\varnothing], [\{3\}]$ and $[\mathbb{N}]$. (This one is a little harder than the others)

Question A.3. Consider the set $A = \{1, 2, 3, 4\}$. Give a relation $R \subseteq A \times A$ satisfying the following.

- (i) R is reflexive, symmetric and transitive.
- (ii) R is reflexive, symmetric and not transitive.
- (iii) R is reflexive, not symmetric and transitive.
- (iv) R is reflexive, not symmetric and not transitive.
- (v) R is not reflexive, symmetric and transitive.
- (vi) R is not reflexive, symmetric and not transitive.
- (vii) R is not reflexive, not symmetric and transitive.
- (viii) R is not reflexive, not symmetric and not transitive.

B. SUBMITTED QUESTIONS

Question B.1. Define \sim on \mathbb{R} by $x \sim y$ if and only if $x - y \in \mathbb{Q}$. Prove that \sim is an equivalence relation and describe the equivalence class [17].

Question B.2. Suppose \sim is a relation on a non-empty set X with the property that for all $x \in X$ there exists $y \in X$ such that $x \sim y$. Suppose \sim is symmetric and transitive. Prove \sim is an equivalence relation.

C. CHALLENGE QUESTIONS

Question C.1. We show a way of using equivalence relations to construct the rationals from the integers. Define $Q = \mathbb{Z} \times \mathbb{N}$ and define \sim on Q by

$$(a,b) \sim (c,d)$$
 if and only if $ad = bc$.

Show that \sim is an equivalence relation. We now denote $\mathbb{Q} = Q / \sim$. Define

 $[(a,b)] + [(c,d)] = [(ad + bc, bd)] \text{ and } [(a,b)] \cdot [(c,d)] = [(ac,bd)]$

- (i) Show that these operations are well defined they do not depend on the representative chosen.
- (ii) Show that for all $[(a,b)] \in \mathbb{Q}$ we have [(a,b)] + [(0,1)] = [(a,b)].
- (iii) Show that for all $[(a,b)] \in \mathbb{Q}$ we have $[(a,b)] \cdot [(1,1)] = [(a,b)]$.