MTH307-HOMEWORK 9

Solutions to the questions in Section B should be submitted by the start of class on 12/06/18.

A. Warm-up Questions

Question A.1. For the following relations, decide if they are reflexive, symmetric or transitive, and if they are equivalence relations.
(i) \leq on \mathbb{R}.
(ii) \neq on \mathbb{Z}.
(iii) \sim on \mathbb{R}^{2} given by $(x, y) \sim(u, v)$ if and only if $x^{2}+y^{2}=u^{2}+v^{2}$.
(iv) \sim on \mathbb{R} given by $x \sim y$ if and only if $|x-y|<1$.
(v) \sim on \mathbb{Z} given by $x \sim y$ if and only if $|x-y|<1$.
(vi) \mid (divides) on the set $\{1,2,3,4,5,6\}$.
(vii) \subseteq on the set $\mathcal{P}(\mathbb{R})$.
(viii) \sim on \mathbb{Z} given by $x \sim y$ if and only if $5 \mid(x-y)$.
(ix) \sim on \mathbb{R} given by $x \sim y$ if and only if $x y \geq 0$.
(x) \sim on \mathbb{R} given by $x \sim y$ if and only if $x y>0$.

Question A.2. Prove that the following relations are equivalence relations, and then compute the given equivalence classes.
(i) \sim on \mathbb{R} defined by $x \sim y$ if and only if $x^{2}=y^{2}$. Find [0], [2] and [-3].
(ii) \sim on \mathbb{R}^{2} by $(x, y) \sim(u, v)$ if and only if $x^{2} v=u^{2} y$. Find $[(1,2)],[(0,0)]$ and $[(3,-1)]$.
(iii) \sim on \mathbb{R} by $n \sim m$ if and only if $n-m \in \mathbb{Z}$. Find [3], [0.5] and [π].
(iv) \sim on \mathbb{Z} by $n \sim m$ if and only if $3 \mid(n-m)$. Find [0], [1] and [2].
(v) \sim on $\mathcal{P}(\mathbb{N})$ by $X \sim Y$ if and only if there exists a bijection $f: X \rightarrow Y$. Find $[\varnothing],[\{3\}]$ and $[\mathbb{N}]$. (This one is a little harder than the others)

Question A.3. Consider the set $A=\{1,2,3,4\}$. Give a relation $R \subseteq A \times A$ satisfying the following.
(i) R is reflexive, symmetric and transitive.
(ii) R is reflexive, symmetric and not transitive.
(iii) R is reflexive, not symmetric and transitive.
(iv) R is reflexive, not symmetric and not transitive.
(v) R is not reflexive, symmetric and transitive.
(vi) R is not reflexive, symmetric and not transitive.
(vii) R is not reflexive, not symmetric and transitive.
(viii) R is not reflexive, not symmetric and not transitive.

B. Submitted Questions

Question B.1. Define \sim on \mathbb{R} by $x \sim y$ if and only if $x-y \in \mathbb{Q}$. Prove that \sim is an equivalence relation and describe the equivalence class [17].
Question B.2. Suppose \sim is a relation on a non-empty set X with the property that for all $x \in X$ there exists $y \in X$ such that $x \sim y$. Suppose \sim is symmetric and transitive. Prove \sim is an equivalence relation.

C. Challenge Questions

Question C.1. We show a way of using equivalence relations to construct the rationals from the integers. Define $Q=\mathbb{Z} \times \mathbb{N}$ and define \sim on Q by

$$
(a, b) \sim(c, d) \text { if and only if } a d=b c
$$

Show that \sim is an equivalence relation. We now denote $\mathbb{Q}=Q / \sim$. Define

$$
[(a, b)]+[(c, d)]=[(a d+b c, b d)] \text { and }[(a, b)] \cdot[(c, d)]=[(a c, b d)]
$$

(i) Show that these operations are well defined - they do not depend on the representative chosen.
(ii) Show that for all $[(a, b)] \in \mathbb{Q}$ we have $[(a, b)]+[(0,1)]=[(a, b)]$.
(iii) Show that for all $[(a, b)] \in \mathbb{Q}$ we have $[(a, b)] \cdot[(1,1)]=[(a, b)]$.

