MTH307 - HOMEWORK 8

Solutions to the questions in Section B should be submitted by the start of class on $11 / 15 / 18$.

A. Warm-up Questions

Question A.1.

(i) Let X be a set. Prove that $I_{X}: X \rightarrow X$, given by $I_{X}(x)=x$ is a bijection.
(ii) Show that any function $f: X \rightarrow \operatorname{ran} f$ is a surjection.

Question A.2. Decide if the following functions are injective and/or surjective, and prove your answer. If they are bijections, compute the inverse function.
(i) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=2 x+3$.
(ii) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{3}-2$.
(iii) $f: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x-|x|$.
(iv) $f: \mathbb{R}^{2} \rightarrow \mathbb{R}, f(x, y)=x+y$.
(v) $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}, f(x, y, z)=(x-y, y+z)$.
(vi) $f: \mathbb{N} \rightarrow \mathcal{P}(\mathbb{N}), f(n)=\{1,2, \ldots, n\}$.
(vii) $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, f(x, y)=\left(y-x^{2}, x\right)$.
(viii) $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}, f(x, y)=\left(x, y, x^{2}+y^{2}\right)$.

Question A.3. Let $f: X \rightarrow Y$ be a function. We say $g: Y \rightarrow X$ is a left inverse of f if $g \circ f=I_{X}$ and we say $g: Y \rightarrow X$ is a right inverse of f if $f \circ g=I_{Y}$.
(i) Prove that f has a left inverse if and only if it is injective.
(ii) Prove that f has a right inverse if and only if it is surjective.
(iii) If a function has a left inverse, must the left inverse be unique? What about a right inverse?

Question A.4. Let X, Y and Z be sets.
(i) Show that $f: X \rightarrow Y$ is injective if and only if for all $h_{1}: Z \rightarrow X$ and $h_{2}: Z \rightarrow X$, $f \circ h_{1}=f \circ h_{2}$ implies $h_{1}=h_{2}$.
(ii) Show that $f: X \rightarrow Y$ is surjective if and only if for all $h_{1}: Y \rightarrow Z$ and $h_{2}: Y \rightarrow Z$, $h_{1} \circ f=h_{2} \circ f$ implies $h_{1}=h_{2}$.

B. Submitted Questions

Question B.1. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by $f(x, y)=\left(y^{3}, x y\right)$. Decide if f is injective and/or surjective and prove your answer.
Question B.2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by

$$
f(x)= \begin{cases}-x & \text { if } x \geq 0 \\ x^{2} & \text { if } x<0\end{cases}
$$

(i) Prove that f is a bijection.
(ii) Find f^{-1}.

C. Challenge Questions

Question C.1. Prove the following.
(i) $f: \mathbb{N} \rightarrow \mathbb{Z}$ given by

$$
f(n)= \begin{cases}\frac{n}{2} & \text { if } n \text { is even } \\ \frac{-}{n+1} 2 & \text { if } n \text { is odd }\end{cases}
$$

is a bijection. What is the inverse?
(ii) $f: \mathbb{Q} \cap(0, \infty) \rightarrow \mathbb{N}$ given by $f\left(\frac{m}{n}\right)=2^{m} 3^{n}$ (where $\frac{m}{n}$ is fully reduced) is an injection.

Question C.2. Let X be a set with m elements and Y a set with n elements.
(i) If $m \leq n$, how many injections $f: X \rightarrow Y$ are there?
(ii) If $m \geq n$, how many surjections $f: X \rightarrow Y$ are there?
(iii) If $m=n$, how many bijections $f: X \rightarrow Y$ are there?

