MTH307-HOMEWORK 7

Solutions to the questions in Section B should be submitted by the start of class on 11/08/18.

A. Warm-up Questions

Question A.1. Compute $\operatorname{dom} f$ and $\operatorname{ran} f$ for the following functions (the natural domain is \mathbb{R} in each case) and prove your answers.
(i) $f(x)=3-4 x$.
(v) $f(x)=\frac{x-1}{x+1}$.
(ii) $f(x)=x^{2}+3$
(vi) $f(x)=3-\sqrt{2+x}$.
(iii) $f(x)=x^{2}+6 x-4$.
(vii) $f(x)=\frac{3 x-5}{2 x-1}$.
(iv) $f(x)=x^{2}-x-1$.
(viii) $f(x)=\frac{4}{1+x^{4}}$.

Question A.2. Compute ran f for the following functions and prove your answer.
(i) $f: \mathbb{Z}^{2} \rightarrow \mathbb{Z}, f(m, n)=m+n$.
(ii) $f: \mathbb{Z}^{2} \rightarrow \mathbb{Z}, f(m, n)=2 m+n+1$.
(iii) $f: \mathbb{Z}^{2} \rightarrow \mathbb{Z}, f(m, n)=2 m+4 n$.
(iv) $f: \mathbb{R}^{2} \rightarrow \mathbb{R}, f(x, y)=y$.
(v) $f: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by

$$
f(n)= \begin{cases}n+4 & \text { if } n \text { is even } \\ n-2 & \text { if } n \text { is odd }\end{cases}
$$

(vi) $f: \mathcal{P}(\mathbb{R}) \rightarrow \mathcal{P}(\mathbb{R}), f(X)=\mathbb{R}-X$.

Question A.3. Compute $g \circ f$ and $f \circ g$ for each of the following functions.
(i) $f, g: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{2}+1, g(x)=x-1$.
(ii) $f, g: \mathbb{R}-\{1\} \rightarrow \mathbb{R}, f(x)=g(x)=\frac{x}{x-1}$.
(iii) $f: \mathbb{R}-\{-2\} \rightarrow \mathbb{R}, g: \mathbb{R}-\left\{\frac{3}{5}\right\}, f(x)=\frac{3 x+5}{x+2}$ and $g(x)=\frac{2 x-1}{3-5 x}$.
(iv) $f, g: \mathbb{R} \rightarrow \mathbb{R}, f(x)=x^{2}+1, g(x)=x^{2}-1$.

B. Submitted Questions

Question B.1. Find ran f for the following functions.
(i) $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by $f(x, y)=\left(y-x^{2}, x\right)$.
(ii) $f: \mathbb{Z} \rightarrow \mathbb{Z}$ defined by

$$
\begin{gathered}
f(n)= \begin{cases}n+4 & \text { if } n \text { is even } \\
n-3 & \text { if } n \text { is odd. }\end{cases} \\
\text { C. Challenge Questions }
\end{gathered}
$$

Question C.1. A formal definition of a function. We give a set-theoretic definition of a function $f: X \rightarrow Y$. We says that $f \subseteq X \times Y$ is a function $f: X \rightarrow Y$ if for each $x \in X$ there exists exactly one $y \in Y$ such that $(x, y) \in f$. In this case we write $y=f(x)$.
(i) Show that for the above definition, we have $f=G_{f}$, the graph of f.
(ii) Show that, given a function f, we may compute $\operatorname{dom} f=\{x \mid(\exists y)(x, y) \in f\}$.
(iii) Show that, if we take this definition of a function, then two functions can be equal even if they have different codomains (but the ranges must be equal).

Question C.2. We say that $d: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a metric if it satisfies the following properties for all $x, y, z \in \mathbb{R}$.
(1) $d(x, y) \geq 0$.
(2) $d(x, y)=0$ if and only if $x=y$.
(3) $d(x, y)=d(y, x)$.
(4) $d(x, y) \leq d(x, z)+d(z, y)$.

Prove the following are metrics on \mathbb{R}.
(i) $d(x, y)=|x-y|$.
(ii) $d(x, y)=1$ for all $x \neq y$ and $d(x, x)=0$ for all $x \in \mathbb{R}$.
(iii) $d(x, y)=\frac{|x-y|}{1+|x-y|}$.

