MTH307 - HOMEWORK 7

Solutions to the questions in Section B should be submitted by the start of class on 11/08/18.

A. WARM-UP QUESTIONS

Question A.1. Compute dom f and ran f for the following functions (the natural domain is \mathbb{R} in each case) and prove your answers.

(v) $f(x) = \frac{x-1}{x+1}$. (vi) $f(x) = 3 - \sqrt{2+x}$. (vii) $f(x) = \frac{3x-5}{2x-1}$. (viii) $f(x) = \frac{4}{1+x^4}$. (i) f(x) = 3 - 4x. (ii) $f(x) = x^2 + 3$ (iii) $f(x) = x^2 + 6x - 4$. (iv) $f(x) = x^2 - x - 1$.

Question A.2. Compute ran f for the following functions and prove your answer.

- (i) $f: \mathbb{Z}^2 \to \mathbb{Z}, f(m, n) = m + n.$
- (ii) $f: \mathbb{Z}^2 \to \mathbb{Z}, f(m,n) = 2m + n + 1.$
- (iii) $f: \mathbb{Z}^2 \to \mathbb{Z}, f(m,n) = 2m + 4n.$
- (iv) $f: \mathbb{R}^2 \to \mathbb{R}, f(x, y) = y.$
- (v) $f: \mathbb{Z} \to \mathbb{Z}$ defined by

$$f(n) = \begin{cases} n+4 & \text{if } n \text{ is even,} \\ n-2 & \text{if } n \text{ is odd.} \end{cases}$$

(vi)
$$f: \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R}), f(X) = \mathbb{R} - X.$$

Question A.3. Compute $g \circ f$ and $f \circ g$ for each of the following functions.

- (i) $f, g: \mathbb{R} \to \mathbb{R}, f(x) = x^2 + 1, g(x) = x 1.$
- (i) $f, g: \mathbb{R} \to \mathbb{R}, f(x) = x^{2} + 1, g(x) = x^{2} 1.$ (ii) $f, g: \mathbb{R} \{1\} \to \mathbb{R}, f(x) = g(x) = \frac{x}{x-1}.$ (iii) $f: \mathbb{R} \{-2\} \to \mathbb{R}, g: \mathbb{R} \{\frac{3}{5}\}, f(x) = \frac{3x+5}{x+2} \text{ and } g(x) = \frac{2x-1}{3-5x}.$ (iv) $f, g: \mathbb{R} \to \mathbb{R}, f(x) = x^{2} + 1, g(x) = x^{2} 1.$

B. SUBMITTED QUESTIONS

Question B.1. Find ran f for the following functions.

(i) $f: \mathbb{R}^2 \to \mathbb{R}^2$ defined by $f(x, y) = (y - x^2, x)$.

(ii) $f: \mathbb{Z} \to \mathbb{Z}$ defined by

$$f(n) = \begin{cases} n+4 & \text{if } n \text{ is even,} \\ n-3 & \text{if } n \text{ is odd.} \end{cases}$$

C. CHALLENGE QUESTIONS

Question C.1. A formal definition of a function. We give a set-theoretic definition of a function $f: X \to Y$. We says that $f \subseteq X \times Y$ is a function $f: X \to Y$ if for each $x \in X$ there exists exactly one $y \in Y$ such that $(x, y) \in f$. In this case we write y = f(x).

- (i) Show that for the above definition, we have $f = G_f$, the graph of f.
- (ii) Show that, given a function f, we may compute dom $f = \{x \mid (\exists y)(x, y) \in f\}$.
- (iii) Show that, if we take this definition of a function, then two functions can be equal even if they have different codomains (but the ranges must be equal).

Question C.2. We say that $d: \mathbb{R}^2 \to \mathbb{R}$ is a *metric* if it satisfies the following properties for all $x, y, z \in \mathbb{R}.$

- (1) $d(x, y) \ge 0$.
- (2) d(x, y) = 0 if and only if x = y.
- (3) d(x, y) = d(y, x).
- (4) $d(x,y) \le d(x,z) + d(z,y)$.

Prove the following are metrics on \mathbb{R} .

(i)
$$d(x, y) = |x - y|$$
.
(ii) $d(x, y) = 1$ for all $x \neq y$ and $d(x, x) = 0$ for all $x \in \mathbb{R}$.
(iii) $d(x, y) = \frac{|x - y|}{1 + |x - y|}$.