MTH307-HOMEWORK 6

Solutions to the questions in Section B should be submitted by the start of class on $11 / 1 / 18$.

A. Warm-up Questions

Question A.1. Let $A=\{a, b\}$ and $B=\{a, c, d\}$. Compute the following.
(a) $\mathcal{P}(A)$.
(f) $\mathcal{P}(A) \cup \mathcal{P}(B)$.
(b) $\mathcal{P}(\mathcal{P}(A))$.
(g) $\mathcal{P}(A \cup B)$.
(c) $\mathcal{P}(A)-\mathcal{P}(B)$.
(h) $\mathcal{P}(A \cap B)$.
(d) $\mathcal{P}(A-B)$.
(i) $\mathcal{P}(A) \cap \mathcal{P}(B)$.
(e) $\mathcal{P}(A \cup B)$.
(j) $A \times \mathcal{P}(\mathcal{P}(\varnothing))$.

Question A.2. Let A and B be sets. Prove or disprove the following.
(a) $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.
(b) $\mathcal{P}(A \cup B)=\mathcal{P}(A) \cup \mathcal{P}(B)$.
(c) $\mathcal{P}(A-B)=\mathcal{P}(A)-\mathcal{P}(B)$.

Question A.3. For the following sets A_{i}, compute $\bigcap_{i \in \mathbb{N}} A_{i}$ and $\bigcup_{i \in \mathbb{N}} A_{i}$ and prove your answers.
(a) $A_{i}=(-i, i)$.
(d) $A_{i}=\left(\frac{1}{i}, i\right)$.
(b) $A_{i}=\left(0, \frac{1}{i}\right)$.
(e) $A_{i}=\left[2-\frac{1}{i}, 5+\frac{1}{i}\right]$.
(c) $A_{i}=\left[\frac{1}{i}, i\right]$.

Question A.4.

(a) For each $r \in \mathbb{R}$ define $\ell_{r}=\left\{(x, r x) \in \mathbb{R}^{2} \mid x \in \mathbb{R}\right\}$. Compute $\bigcap_{r \in \mathbb{R}} \ell_{r}$ and prove your answer.
(b) For $x \in[0,1]$ define $A_{x}=[0, x] \times[\sqrt{x}, 1]$. Compute $\bigcap_{x \in[0,1]} A_{x}$ and $\bigcup_{x \in[0,1]} A_{x}$ and prove your answers.

Question A.5. For $\alpha \in \mathbb{R}$, define

$$
G_{\alpha}=\left\{\left(x, \alpha\left(x^{2}-1\right)\right) \in \mathbb{R}^{2} \mid x \in \mathbb{R}\right\}
$$

(a) Sketch (on the same diagram) the sets G_{0}, G_{1} and G_{-1}.
(b) Prove that $\bigcap_{\alpha \in \mathbb{R}} G_{\alpha}=\{(1,0),(0,1)\}$.

B. Submitted Questions

Question B.1. Let A and B be sets. Prove or disprove that $\mathcal{P}(A \cap B)=\mathcal{P}(A) \cap \mathcal{P}(B)$.
Question B.2. For $\alpha \in \mathbb{R}$ define

$$
G_{\alpha}=\left\{\left(x, e^{\alpha x}\right) \in \mathbb{R}^{2} \mid x \in \mathbb{R}\right\}
$$

Find $\bigcap_{\alpha \in \mathbb{R}} G_{\alpha}$ and prove your answer.

C. Challenge Questions

Question C.1. Let X be a non-empty set. Compute the following.
(a)

(b) $\bigcup_{A \in \mathcal{P}(X)} A$.

Question C.2. Let X be any set and suppose $A, B \in \mathcal{P}(X)$. Recall that the symmetric difference is $A \triangle B=(A-B) \cup(B-A)$.
(a) Prove that $A \triangle B=B \triangle A$.
(b) Show that there exists a unique $E \in \mathcal{P}(X)$ such that $A \triangle E=A$ for all $A \in \mathcal{P}(X)$.
(c) Show that for all $A \in \mathcal{P}(X)$, there exists $B \in \mathcal{P}(X)$ such that $A \triangle B=E$.
(d) Show that if $A, B \in \mathcal{P}(X)$ then there exists a unique $C \in \mathcal{P} X$ such that $A \triangle C=B$.

