MTH307 - HOMEWORK 6

Solutions to the questions in Section B should be submitted by the start of class on 11/1/18.

A. WARM-UP QUESTIONS

Question A.1. Let $A = \{a, b\}$ and $B = \{a, c, d\}$. Compute the following.

(a) $\mathcal{P}(A)$.	(f) $\mathcal{P}(A) \cup \mathcal{P}(B)$.
(b) $\mathcal{P}(\mathcal{P}(A))$.	(g) $\mathcal{P}(A \cup B)$.
(c) $\mathcal{P}(A) - \mathcal{P}(B)$.	(h) $\mathcal{P}(A \cap B)$.
(d) $\mathcal{P}(A-B)$.	(i) $\mathcal{P}(A) \cap \mathcal{P}(B)$.
(e) $\mathcal{P}(A \cup B)$.	(j) $A \times \mathcal{P}(\mathcal{P}(\emptyset))$.

Question A.2. Let A and B be sets. Prove or disprove the following.

- (a) $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.
- (b) $\mathcal{P}(A \cup B) = \mathcal{P}(A) \cup \mathcal{P}(B).$
- (c) $\mathcal{P}(A-B) = \mathcal{P}(A) \mathcal{P}(B)$.

- **Question A.3.** For the following sets A_i , compute $\bigcap_{i \in \mathbb{N}} A_i$ and $\bigcup_{i \in \mathbb{N}} A_i$ and prove your answers. (a) $A_i = (-i, i)$. (b) $A_i = (0, \frac{1}{i})$. (c) $A_i = (0, \frac{1}{i})$. (d) $A_i = (\frac{1}{i}, i)$. (e) $A_i = [2 \frac{1}{i}, 5 + \frac{1}{i}]$. (b) $A_i = (0, \frac{1}{i})$. (c) $A_i = [\frac{1}{i}, i]$.

Question A.4.

(a) For each $r \in \mathbb{R}$ define $\ell_r = \{(x, rx) \in \mathbb{R}^2 \mid x \in \mathbb{R}\}$. Compute $\bigcap_{r \in \mathbb{R}} \ell_r$ and prove your answer. (b) For $x \in [0, 1]$ define $A_x = [0, x] \times [\sqrt{x}, 1]$. Compute $\bigcap_{x \in [0, 1]} A_x$ and $\bigcup_{x \in [0, 1]} A_x$ and prove your answers.

Question A.5. For $\alpha \in \mathbb{R}$, define

$$G_{\alpha} = \{ (x, \alpha(x^2 - 1)) \in \mathbb{R}^2 \mid x \in \mathbb{R} \}.$$

(a) Sketch (on the same diagram) the sets G_0 , G_1 and G_{-1} .

(b) Prove that $\bigcap_{\alpha \in \mathbb{R}} G_{\alpha} = \{(1,0), (0,1)\}.$

B. SUBMITTED QUESTIONS

Question B.1. Let A and B be sets. Prove or disprove that $\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$.

Question B.2. For $\alpha \in \mathbb{R}$ define

$$G_{\alpha} = \{ (x, e^{\alpha x}) \in \mathbb{R}^2 \mid x \in \mathbb{R} \}.$$

Find $\bigcap_{\alpha} G_{\alpha}$ and prove your answer. $\alpha \in \mathbb{R}$

C. CHALLENGE QUESTIONS

Question C.1. Let X be a non-empty set. Compute the following.

(a)	A.	(b) L	$\int A$
$A \in \mathcal{P}($	X)	$A{\in}\mathcal{P}$	(X)

Question C.2. Let X be any set and suppose $A, B \in \mathcal{P}(X)$. Recall that the symmetric difference is $A \bigtriangleup B = (A - B) \cup (B - A)$.

- (a) Prove that $A \bigtriangleup B = B \bigtriangleup A$.
- (b) Show that there exists a unique $E \in \mathcal{P}(X)$ such that $A \bigtriangleup E = A$ for all $A \in \mathcal{P}(X)$.
- (c) Show that for all $A \in \mathcal{P}(X)$, there exists $B \in \mathcal{P}(X)$ such that $A \bigtriangleup B = E$.
- (d) Show that if $A, B \in \mathcal{P}(X)$ then there exists a unique $C \in \mathcal{P}X$ such that $A \triangle C = B$.