MTH307 - HOMEWORK 5

Solutions to the questions in Section B should be submitted by the start of class on 10/25/18.

A. WARM-UP QUESTIONS

Question A.1. Prove the following.

- (i) $\{n \in \mathbb{Z} \mid 9 \mid n\} \subseteq \{x \in \mathbb{Z} \mid 3 \mid x\}.$
- (ii) $\{6n \mid n \in \mathbb{Z}\} = \{2n \mid n \in \mathbb{Z}\} \cap \{3y \mid y \in \mathbb{Z}\}.$
- (iii) If $p, q \in \mathbb{N}$ then $\{pn \mid n \in \mathbb{N}\} \cap \{qn \mid n \in \mathbb{N}\} \neq \emptyset$.
- (iv) $\{4^q \mid q \in \mathbb{Q}\} = \{2^q \mid q \in \mathbb{Q}\}.$
- (v) $\{4^n \mid n \in \mathbb{Z}\} \subseteq \{2^n \mid n \in \mathbb{Z}\}.$

Question A.2. Let $\mathcal{U} = \{n \in \mathbb{Z} \mid 1 \le n \le 9\}$ be the universal set and $A = \{1, 5, 9\}, B = \{2, 3, 5, 7\}, B = \{2, 3,$ $C = \{1, 2, 3, 5, 8, 9\}$ and $D = \{2, 4, 6, 8\}$. Compute the following.

(v) $\overline{C \cup D}$. (i) $A \cup B$. (ii) $A \cup (B \cap C)$. (vi) $\overline{C} \cup \overline{D}$. (vii) $(C - A) \cap D$. (iii) $(A \cup B) \cap C$. (iv) $(A \times B) - (C \times D)$. (viii) $(D \cup A) - (C \cap B)$.

Question A.3. Let A, B, C and D be subsets of the universal set \mathcal{U} . Prove the following.

- (iii) $A \cup (B \cup C) = (A \cup B) \cup C$.
- (iv) $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
- Question A.4. Let A, B, C and D be sets. Prove or disprove the following.
 - (i) If $x \notin B$ and $A \subseteq B$ then $x \notin A$.
 - (ii) If $A \subseteq B \cup C$ then $A \subseteq B$ or $A \subseteq C$.
 - (iii) $A \subseteq B$ if and only if $A \cap B = A$.
 - (iv) If A = B C then $B = A \cup C$.
 - (v) If $A B = \emptyset$ then $B \neq \emptyset$.
 - (vi) $(A \cup B) B \subseteq A$.

(i) $\overline{A \cup B} = \overline{A} \cap \overline{B}$.

(ii) $\overline{A \cap B} = \overline{A} \cup \overline{B}$.

(vii) $(A \cup B) - B = A$.

- (viii) A (B C) = (A B) C. (ix) If $A \subseteq C$ and $B \subseteq D$ then $A \cup B \subseteq$ $C \cup D$.
- (x) If $A \subseteq C$ and $B \subseteq D$ then $A D \subseteq$ C-B.
- (xi) $(A \times B) \cup (C \times D) = (A \cup C) \times (B \cup D).$

B. SUBMITTED QUESTIONS

Question B.1. Let A, B and C be sets.

- (i) Prove or disprove that $A \subseteq B \cap C$ if and only if $A \subseteq B$ and $A \subseteq C$.
- (ii) Prove that $(A \cup B) C = (A C) \cup B$ if and only if $B \cap C = \emptyset$.

C. CHALLENGE QUESTIONS

Question C.1. Symmetric difference. Given two sets A and B, we define the symmetric difference of A and B to be $A \triangle B = (A - B) \cup (B - A)$. Prove the following.

- (i) Prove that $A \bigtriangleup B = (A \cup B) (A \cap B)$.
- (ii) Prove that $A \bigtriangleup B = B \bigtriangleup A$.
- (iii) Prove that $A \bigtriangleup (B \bigtriangleup C) = (A \bigtriangleup B) \bigtriangleup C)$.

Question C.2. Ordered Pairs. Formally, we may define an ordered pair as a set by (x, y) = $\{\{x\}, \{x, y\}\}$. Prove that (x, y) = (z, w) if and only if x = z and y = w (and so this definition is consistent with our understanding of equality of ordered pairs).

- - (v) $(A \times B) \cap (C \times D) = (A \cap C) \times (B \cap D).$
 - (vi) $A \cup \overline{A} = \mathcal{U}$.
 - (vii) $A B = A \cap \overline{B}$.
 - (viii) $(A \cup B) C \subseteq (A C) \cup B$.