MTH307 - HOMEWORK 4

Solutions to the questions in Section B should be submitted by the start of class on 10/11/18.

A. WARM-UP QUESTIONS

Question A.1. Prove the following by induction.

- (a) For all $n \in \mathbb{N}$, $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$ (a) For all $n \in \mathbb{N}$, $\sum_{i=1}^{n} i^{0} = \frac{n^{2}(n+1)^{2}}{4}$. (b) For all $n \in \mathbb{N}$, $\sum_{i=1}^{n} i^{3} = \frac{n^{2}(n+1)^{2}}{4}$. (c) For all $n \in \mathbb{N}$, $\sum_{i=1}^{n} (2i-1) = n^{2}$. (d) For all $n \in \mathbb{N}$, $\sum_{i=1}^{n} i(i+1) = \frac{n(n+1)(n+2)}{3}$. (e) For all $n \ge 5$ we have $n^2 < 2^n$. (f) For all $n \ge 10$, we have $n^3 < 2^n$. (g) For all $n \in \mathbb{N}$, we have $8 \mid (3^{2n} - 1)$.
- (h) For all $n \in \mathbb{N}$, we have $3 \mid (n^2 + 5n + 6)$.

Question A.2. Recall that the *Fibonacci sequence* is defined recursively by $f_1 = 1$, $F_2 = 2$ and $F_n = F_{n-1} + F_{n-2}$ for all $n \ge 3$. Prove the following for all $n \in \mathbb{N}$.

- (a) $F_1 + F_2 + \dots + F_n = F_{n+2} 1.$
- (b) $F_{n+1}^2 F_{n+1}F_n F_n^2 = (-1)^n$. (c) $F_1^2 + F_2^2 + \dots + F_n^2 = F_nF_{n+1}$. (d) $F_1 + F_3 + \dots + F_{2n-1} = F_{2n}$.

Question A.3.

- (a) Suppose $a_1 = 1$, $a_2 = 2$ and $a_n = 10a_{n-1} 7a_{n-2}$ for all $n \ge 3$. Prove that $a_n = 2^{n-1}$ for all $n \in \mathbb{N}$.
- (b) Suppose $a_1 = 1$, $a_2 = 2$ and $a_n = 2a_{n-1} a_{n-2}$. Find a closed formula for a_n and prove it.
- (c) Suppose $a_1 = 2$ and $a_2 = 6$ and that $a_n = 2a_{n-1} + a_{n-2}$ for $n \ge 3$. Prove that $a_n = 2a_{n-1} + a_{n-2}$ $(1+\sqrt{2})^n + (1-\sqrt{2})^n$ for all $n \in \mathbb{N}$.

Question A.4. Criticise the following proof by induction.

Proposition. All cows are the same colour.

Proof. We show that for all $n \in \mathbb{N}$, all collections of n cows are the same colour. First note that if n = 1, this is clear, since all collections of 1 cow have a common colour. For the inductive step, assume that for some $k \geq 1$, all collections of k cows are the same colour. Now consider a collection of k + 1 cows. Label the cows $c_1, c_2, \ldots, c_{k+1}$. Then notice that c_1, \ldots, c_k is a collection of k cows so they all are the same colour. But then c_2, \ldots, c_{k+1} is a collection of k cows, so they also must be the same colour. Since c_2 belongs to both of these collections, all the k+1 cows must be the same colour. Hence by induction, if $n \in \mathbb{N}$ then all collections of k cows are the same colour, and so all cows are the same colour.

B. SUBMITTED QUESTIONS

Question B.1. Prove that if $n \in \mathbb{N}$ then

$$\sum_{i=1}^{n} i(i+2) = \frac{n(n+1)(2n+7)}{6}$$

Question B.2. Let F_n be the Fibonacci sequence. Prove that

$$F_2 + F_4 + \dots + F_{2n} = F_{2n+1} - 1.$$

C. CHALLENGE QUESTIONS

Question C.1. Prove that if x > -1 and $n \in \mathbb{N}$ then $(1+x)^n > 1 + nx$.

Question C.2. Prove for all integers $n \in \mathbb{N}$ that

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{2n-1} - \frac{1}{2n} = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n}.$$