MTH307-HOMEWORK 4

Solutions to the questions in Section B should be submitted by the start of class on 10/11/18.

A. Warm-up Questions

Question A.1. Prove the following by induction.
(a) For all $n \in \mathbb{N}, \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$.
(b) For all $n \in \mathbb{N}, \sum_{i=1}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}$.
(c) For all $n \in \mathbb{N}, \sum_{i=1}^{n}(2 i-1)=n^{2}$.
(d) For all $n \in \mathbb{N}, \sum_{i=1}^{n} i(i+1)=\frac{n(n+1)(n+2)}{3}$.
(e) For all $n \geq 5$ we have $n^{2}<2^{n}$.
(f) For all $n \geq 10$, we have $n^{3}<2^{n}$.
(g) For all $n \in \mathbb{N}$, we have $8 \mid\left(3^{2 n}-1\right)$.
(h) For all $n \in \mathbb{N}$, we have $3 \mid\left(n^{2}+5 n+6\right)$.

Question A.2. Recall that the Fibonacci sequence is defined recursively by $f_{1}=1, F_{2}=2$ and $F_{n}=F_{n-1}+F_{n-2}$ for all $n \geq 3$. Prove the following for all $n \in \mathbb{N}$.
(a) $F_{1}+F_{2}+\cdots+F_{n}=F_{n+2}-1$.
(b) $F_{n+1}^{2}-F_{n+1} F_{n}-F_{n}^{2}=(-1)^{n}$.
(c) $F_{1}^{2}+F_{2}^{2}+\cdots+F_{n}^{2}=F_{n} F_{n+1}$.
(d) $F_{1}+F_{3}+\cdots+F_{2 n-1}=F_{2 n}$.

Question A.3.

(a) Suppose $a_{1}=1, a_{2}=2$ and $a_{n}=10 a_{n-1}-7 a_{n-2}$ for all $n \geq 3$. Prove that $a_{n}=2^{n-1}$ for all $n \in \mathbb{N}$.
(b) Suppose $a_{1}=1, a_{2}=2$ and $a_{n}=2 a_{n-1}-a_{n-2}$. Find a closed formula for a_{n} and prove it.
(c) Suppose $a_{1}=2$ and $a_{2}=6$ and that $a_{n}=2 a_{n-1}+a_{n-2}$ for $n \geq 3$. Prove that $a_{n}=$ $(1+\sqrt{2})^{n}+(1-\sqrt{2})^{n}$ for all $n \in \mathbb{N}$.
Question A.4. Criticise the following proof by induction.
Proposition. All cows are the same colour.
Proof. We show that for all $n \in \mathbb{N}$, all collections of n cows are the same colour. First note that if $n=1$, this is clear, since all collections of 1 cow have a common colour. For the inductive step, assume that for some $k \geq 1$, all collections of k cows are the same colour. Now consider a collection of $k+1$ cows. Label the cows $c_{1}, c_{2}, \ldots, c_{k+1}$. Then notice that c_{1}, \ldots, c_{k} is a collection of k cows so they all are the same colour. But then c_{2}, \ldots, c_{k+1} is a collection of k cows, so they also must be the same colour. Since c_{2} belongs to both of these collections, all the $k+1$ cows must be the same colour. Hence by induction, if $n \in \mathbb{N}$ then all collections of k cows are the same colour, and so all cows are the same colour.

B. Submitted Questions

Question B.1. Prove that if $n \in \mathbb{N}$ then

$$
\sum_{i=1}^{n} i(i+2)=\frac{n(n+1)(2 n+7)}{6} .
$$

Question B.2. Let F_{n} be the Fibonacci sequence. Prove that

$$
F_{2}+F_{4}+\cdots+F_{2 n}=F_{2 n+1}-1 .
$$

C. Challenge Questions

Question C.1. Prove that if $x>-1$ and $n \in \mathbb{N}$ then $(1+x)^{n} \geq 1+n x$.
Question C.2. Prove for all integers $n \in \mathbb{N}$ that

$$
1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots+\frac{1}{2 n-1}-\frac{1}{2 n}=\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2 n} .
$$

