MTH307 - HOMEWORK 3

Solutions to the questions in Section B should be submitted by the start of class on 4/10/18.

A. Warm-up Questions

Question A.1. Prove the following by contradiction.
(i) There is no integer n which is both odd and even.
(ii) There are no integers m and n such that $21 m+30 n=1$.
(iii) $\sqrt[3]{2}$ is irrational.
(iv) If $\pi / 2 \leq x \leq \pi$ then $\sin x-\cos x \geq 1$.

Question A.2. Prove the following with the contrapositive.
(i) Let a, b and c be integers. If a does not divide $b c$, then a does not divide b.
(ii) Let $x \in \mathbb{Z}$. If $x^{3}-1$ is even then x is odd.
(iii) Let $x \in \mathbb{R}$. If $x^{5}+3 x^{3}+x \geq x^{4}+6 x^{2}+4$ then $x \geq 0$.
(iv) Let $x, y \in \mathbb{Z}$. If $x^{2}\left(y^{2}-2 y\right)$ is odd then x and y are odd.

Question A.3. Prove or disprove the following.
(i) Let a and b be positive integers. Then if $a \mid b$ and $b \mid a$ then $a=b$.
(ii) If x and y are irrational then $x y$ is irrational.
(iii) If $x \neq 0$ and x is rational and y is irrational then $x y$ is irrational.
(iv) If $x, y \in \mathbb{Z}$ then $x^{2}-4 y \neq 2$.
(v) Let $a, b \in \mathbb{R}$. Then if $a^{3}+a b^{2} \leq b^{3}+a^{2} b$ then $a \leq b$.
(vi) $(\forall x \in \mathbb{R})(\exists y \in \mathbb{R})(\forall z \in \mathbb{R})[x y=x z]$.
(vii) $(\exists y \in \mathbb{R})(\forall x \in \mathbb{R})(\exists z \in \mathbb{R})[x y=x z]$.
(viii) $(\forall x \in \mathbb{R})(\exists y \in \mathbb{R})[x y=1]$.
(ix) $(\exists y \in \mathbb{R})(\forall x \in \mathbb{R})[x y=1]$.
(x) $(\forall x \in \mathbb{Q})(\forall y \in \mathbb{Q})(\exists z \in \mathbb{Q})(x<z<y)$.

B. Submitted Questions

Question B.1. Prove or disprove the following.
(i) If $x \neq 0$ and x is rational and y is irrational then $x y$ is irrational.
(ii) Let $x, y \in \mathbb{Z}$. Then if $x+y$ is even then x and y have the same parity.

C. Challenge Questions

Question C.1. Let $x \in \mathbb{R}$. Prove that $\sqrt{3}+x$ is irrational or $\sqrt{3}-x$ is irrational.
Question C.2. Let $x \in \mathbb{R}$ and suppose that for all $\varepsilon>0$ we have $|x|<\varepsilon$. Prove that $x=0$.
Question C.3. A preview of analysis. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function and $c \in \mathbb{R}$. We say that $f(x)$ converges to L as x converges to c if for all $\varepsilon>0$ there exists $\delta>0$ such that if $0<|x-c|<\delta$ then $|f(x)-L|<\varepsilon$. In this case we write $\lim _{x \rightarrow c} f(x)=L$.
(i) Write out the negation of the above definition.
(ii) Let

$$
f(x)= \begin{cases}7-3 x & \text { if } x \neq 1 \\ 2018 & \text { if } x=1\end{cases}
$$

Prove that $\lim _{x \rightarrow 1} f(x)=4$.
(iii) Let

$$
f(x)= \begin{cases}1 & \text { if } x \geq 0 \\ 0 & \text { if } x<0\end{cases}
$$

Prove that $\lim _{x \rightarrow 0} f(x) \neq 1$.

