## MTH307 - HOMEWORK 2

Solutions to the questions in Section B should be submitted by the start of class on 09/27/18. You may like to remind yourself on the properties of integers and real numbers found on pages 23 and 27 respectively of the textbook.

## A. Warm-up Questions

Question A.1. Prove the following.
(i) If $x$ is odd then $x^{2}+3 x+9$ is odd.
(ii) If $x \in \mathbb{R}$ then $x^{2} \geq 0$ (Use cases).
(iii) If $x \in \mathbb{Z}$ then $5 x^{2}+3 x+7$ is odd.
(iv) If $a \mid b$ and $c \mid d$ then $a c \mid b d$.
(v) If $x<0$ then $x+\frac{1}{x} \leq-2$.
(vi) If $0<a<b$ then $0<a^{2}<b^{2}$.
(vii) If $x$ is odd then $x^{3}$ is odd.
(viii) If $x \in \mathbb{R}$ and $x \neq 0$ then there exists a unique $y \in \mathbb{R}$ such that $x y=1$.
(ix) If $m$ and $n$ are even then $4 \mid m n$.
(x) If $x, y \in \mathbb{R}$ then $\sqrt{x y} \leq \frac{x+y}{2}$.
(xi) There exists a prime number $p$ with $90<p<100$.

## B. Submitted Questions

Question B.1. Prove the following.
(i) Suppose $x, y \in \mathbb{R}$. If $x^{2}+5 y=y^{2}+5 x$ then $x=y$ or $x+y=5$
(ii) If $x \in \mathbb{R}$ and $0<x<4$ then $\frac{4}{x(4-x)} \geq 1$.

## C. Challenge Questions

Question C.1. Prove the following.
(i) If $n^{2} \mid n$ then $n=1$ or $n=0$ or $n=-1$.
(ii) If $x, y \in \mathbb{R}$ and $x y=0$ then $x=0$ or $y=0$.
(iii) If $a, b, c \in \mathbb{R}$ then $a x^{2}+b x+c=0$ has a (real) solution $u$ if and only if $b^{2}-4 a c \geq 0$ and $u=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.
(iv) If $m$ is an odd integer, then there exists $k \in \mathbb{Z}$ such that $m^{2}=8 k+1$.

