MTH307 - HOMEWORK 10

Here are some practice problems (mainly on cardinality) to help you prepare for the final.

Question 1. Suppose X, Y, Z are non-empty. Prove the following.

- (i) |X| = |X|.
- (ii) If |X| = |Y| then |Y| = |X|.
- (iii) If |X| = |Y| and |Y| = |Z| then |X| = |Z|.

Question 2. Let |X| = n. How many bijections are there on X?

Question 3. Let $X = \{1, \frac{1}{2}, \frac{1}{3}, ...\}$ and $Y = \{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, ...\}$. Prove that |X| = |Y|. Then use this to prove that |[0, 1)| = |[0, 1]|.

Question 4. Let X be an infinite set and $x \in X$. Prove that $X - \{x\}$ is infinite.

Question 5. Let X be an infinite set. Prove that X contains a countably infinite subset.

Question 6. Let A and B be finite sets. Prove the following.

- (i) $A \cap B$ is finite.
- (ii) $|A \cup B| = |A| + |B| |A \cap B|$.
- (iii) $|\{f \mid f \colon A \to B\}| = |B|^{|A|}.$

Question 7. Let X be countably infinite. Prove there exists $Y \subseteq X$ with $X \neq Y$ and |X| = |Y|.

Question 8. Prove that $\{n \in \mathbb{Z} \mid 7 \mid n\}$ is countably infinite.

Question 9. Suppose |A| = |B|. Prove that $|\mathcal{P}(A)| = |\mathcal{P}(B)|$.

Question 10. Let A and B be finite with |A| = |B| and suppose $f: A \to B$. Show that f is injective if and only if it is surjective.

Question 11. Show that $\{X \in \mathcal{P}(\mathbb{N}) \mid X \text{ is finite}\}$ is countably infinite.