MTH307 - HOMEWORK 1

Solutions to the questions in Section B should be submitted by the start of class on 9/20/18.

A. WARM-UP QUESTIONS

Question A.1. Show that the following pairs of statements are logically equivalent.

(i) $P \Rightarrow Q$ and $(\neg P) \lor Q$.	(iv) $(P \land Q) \lor R$ and $(P \lor R) \land (Q \lor R)$
(ii) $P \lor Q$ and $Q \lor P$.	(v) $P \wedge (Q \wedge R)$ and $(P \wedge Q) \wedge R$
(iii) P and $(\neg P) \Rightarrow (Q \land (\neg Q))$	(vi) $P \Rightarrow Q$ and $(\neg Q) \Rightarrow (\neg P)$

Question A.2. Prove DeMorgan's Laws. That is, show the following are logically equivalent.

(i) $\neg (P \land Q)$ and $(\neg P) \lor (\neg Q)$.

(ii) $\neg (P \lor Q)$ and $(\neg P) \land (\neg Q)$.

Question A.3. A *tautology* is a statement that is true no matter the truth values of the statement letters that occur in it. A *contradiction* is a statement that is false no matter the truth values of the statement letters that occur in it. Decide if the following are tautologies, contradictions or neither.

(i) $P \lor (\neg P)$.	(iv) $P \Leftrightarrow (\neg P)$.
(ii) $P \Rightarrow P$.	(v) $P \Rightarrow (Q \Rightarrow P)$.
(iii) $P \wedge (\neg P)$.	(vi) $(P \land (\neg Q)) \lor ((\neg P) \land Q)).$

Question A.4. Find negations the following sentences and write them out in clear, grammatical English.

- (i) For all $x \in \mathbb{R}$ there exists $n \in \mathbb{N}$ such that $n \ge x$.
- (ii) For all prime numbers p, there exists a prime number q with q > p.
- (iii) There exists $b \in \mathbb{Z}$ such that for all $a \in \mathbb{Z}$, ab = a.
- (iv) If $x^2 > 1$ then x > 1 or x < -1.

(v) If f is differentiable at c and f attains a local maximum at c, then f'(c) = 0.

B. SUBMITTED QUESTIONS

Question B.1. Decide if $P \lor (Q \land R)$ and $(P \lor Q) \land R$ are logically equivalent and justify your answer.

Question B.2. Negate the following sentence and write it out in clear, grammatical English. (The sentence is referring to a fixed sequence (a_n) of real numbers).

For all $\varepsilon > 0$ there exists a natural number K such that $|a_n| < \varepsilon$ whenever $n \ge K$.

C. CHALLENGE QUESTIONS

Question C.1. Decide if the following are logically equivalent.

- (i) $(\neg P) \Leftrightarrow Q$ and $(P \Rightarrow \neg Q) \land (\neg Q \Rightarrow P)$.
- (ii) $P \Rightarrow (Q \Rightarrow R)$ and $(P \Rightarrow Q) \Rightarrow R$.
- (iii) $(P \land (\neg Q)) \lor (Q \land (\neg P))$ and $(P \lor Q) \land (\neg (P \land Q))$.
- (iv) $(P \Rightarrow R) \land (Q \Rightarrow R)$ and $(P \land Q) \Rightarrow R$.

Question C.2. Define the logical connective * by the formula $P * Q \equiv (\neg P) \land (\neg Q)$.

- (i) Show that $\neg P \equiv P * P$
- (iv) Show that $P \Rightarrow Q \equiv ((P*P)*Q)*((P*P)*Q)$
- (ii) Show that $P \land Q \equiv (P * P) * (Q * Q)$ (iii) Show that $P \lor Q \equiv (P * Q) * (P * Q)$ (v) Is it true that $(P * Q) * R \equiv P * (Q * R)$?

Conclude that we can write all logical statements just using the operator *. Also conclude that

this may be more trouble than its worth.