MTH307 - HOMEWORK 1

Solutions to the questions in Section B should be submitted by the start of class on 9/20/18.

A. Warm-up Questions

Question A.1. Show that the following pairs of statements are logically equivalent.
(i) $P \Rightarrow Q$ and $(\neg P) \vee Q$.
(iv) $(P \wedge Q) \vee R$ and $(P \vee R) \wedge(Q \vee R)$
(ii) $P \vee Q$ and $Q \vee P$.
(v) $P \wedge(Q \wedge R)$ and $(P \wedge Q) \wedge R$
(iii) P and $(\neg P) \Rightarrow(Q \wedge(\neg Q))$
(vi) $P \Rightarrow Q$ and $(\neg Q) \Rightarrow(\neg P)$

Question A.2. Prove DeMorgan's Laws. That is, show the following are logically equivalent.
(i) $\neg(P \wedge Q)$ and $(\neg P) \vee(\neg Q)$.
(ii) $\neg(P \vee Q)$ and $(\neg P) \wedge(\neg Q)$.

Question A.3. A tautology is a statement that is true no matter the truth values of the statement letters that occur in it. A contradiction is a statement that is false no matter the truth values of the statement letters that occur in it. Decide if the following are tautologies, contradictions or neither.
(i) $P \vee(\neg P)$.
(iv) $P \Leftrightarrow(\neg P)$.
(ii) $P \Rightarrow P$.
(v) $P \Rightarrow(Q \Rightarrow P)$.
(iii) $P \wedge(\neg P)$.
(vi) $(P \wedge(\neg Q)) \vee((\neg P) \wedge Q))$.

Question A.4. Find negations the following sentences and write them out in clear, grammatical English.
(i) For all $x \in \mathbb{R}$ there exists $n \in \mathbb{N}$ such that $n \geq x$.
(ii) For all prime numbers p, there exists a prime number q with $q>p$.
(iii) There exists $b \in \mathbb{Z}$ such that for all $a \in \mathbb{Z}, a b=a$.
(iv) If $x^{2}>1$ then $x>1$ or $x<-1$.
(v) If f is differentiable at c and f attains a local maximum at c, then $f^{\prime}(c)=0$.

B. Submitted Questions

Question B.1. Decide if $P \vee(Q \wedge R)$ and $(P \vee Q) \wedge R$ are logically equivalent and justify your answer.

Question B.2. Negate the following sentence and write it out in clear, grammatical English. (The sentence is referring to a fixed sequence (a_{n}) of real numbers).

For all $\varepsilon>0$ there exists a natural number K such that $\left|a_{n}\right|<\varepsilon$ whenever $n \geq K$.

C. Challenge Questions

Question C.1. Decide if the following are logically equivalent.
(i) $(\neg P) \Leftrightarrow Q$ and $(P \Rightarrow \neg Q) \wedge(\neg Q \Rightarrow P)$.
(ii) $P \Rightarrow(Q \Rightarrow R)$ and $(P \Rightarrow Q) \Rightarrow R$.
(iii) $(P \wedge(\neg Q)) \vee(Q \wedge(\neg P))$ and $(P \vee Q) \wedge(\neg(P \wedge Q))$.
(iv) $(P \Rightarrow R) \wedge(Q \Rightarrow R)$ and $(P \wedge Q) \Rightarrow R$.

Question C.2. Define the logical connective * by the formula $P * Q \equiv(\neg P) \wedge(\neg Q)$.
(i) Show that $\neg P \equiv P * P$
(ii) Show that $P \wedge Q \equiv(P * P) *(Q * Q)$
(iii) Show that $P \vee Q \equiv(P * Q) *(P * Q)$

Conclude that we can write all logical statements just using the operator $*$. Also conclude that this may be more trouble than its worth.

