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Outline of Paper

I Early History

I CGS and MGS and QR

I Elimination Methods and MGS

I Reorthogonalization

I Rank Revealing factorizations

I Gram-Schmidt in Iterative Methods
I Implementing Gram-Schmidt Algorithms
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Outline of Talk

I Early History (1795–1907)

I Middle History

1. The work of Åke Björck
Least squares, Stability, Loss of orthogonality

2. The work of Heinz Rutishauser
Selective reorthogonalization and
Superorthogonalization

Acknowledgement: Thanks to Julien Langou for providing his
analysis of Laplace’s work on MGS and for proof reading and
suggesting improvements in my slides.
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Early History

I Least Squares - Gauss and Legendre

I Laplace 1812, Analytic Theory of Probabilities
(1814, 1820)

I Cauchy 1837, 1847 (Interpolation) and
Bienaymé 1853

I J. P. Gram, 1879(Danish), 1883(German)

I Erhard Schmidt 1907
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Gauss and least squares

I Priority dispute:
A. M. Legendre -first
publication 1805;

Gauss claimed
discovery in 1795

I G. Piazzi, January
1801 discovered
asteroid Ceres.
Tracked it for 6
weeks.
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The Gauss derivation of the normal equations

Let x̂ be the solution ATAx = ATb.
For any x we have

r = (b − Ax̂) + A(x̂ − x) ≡ r̂ + Ae,

and since AT r̂ = ATb − ATAx̂ = 0

rT r = (r̂ + Ae)T (r̂ + Ae) = r̂T r̂ + (Ae)T (Ae).

Hence rT r is minimized when x = x̂ .
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Pierre-Simon Laplace (1749–1827)

I Mathematical
Astronomy

I Celestial Mechanics

I Laplace’s Equation

I Laplace Transforms

I Probability Theory and
Least Squares
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Théorie Analytique des Probabilités - Laplace 1812

I Problem: Compute masses of Saturn and Jupiter from
systems of normal equations (Bouvart) and to compute
the distribution of error in the solutions.

I Method: Laplace successively projects the system of
equations orthogonally to a column of the observation
matrix to eliminate all variables but the one of interest.

I Basically Laplace uses MGS to prove that, given an
overdetermined system with a normal perturbation on the
right-hand side, its solution has a centered normal
distribution with variance independent from the
parameters of the noise.
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Laplace 1812 - Linear Algebra

I Laplace uses MGS to derive the Cholesky form of the
normal equations, RTRx = ATx

I Laplace does not seem to realize that the vectors
generated are mutually orthogonal.

I He does observe that the generated vectors are each
orthogonal to the residual vector.
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Cauchy and Bienaymé

Figure: A. Cauchy Figure: I. J. Bienaymé
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Cauchy and Bienaymé

I Cauchy (1837) and (1847)- interpolation method leading
to systems of the form ZTAx = ZTb, where
Z = (z1, . . . , zn) and zij = ±1.

I Bienaymé (1853) new derivation of Cauchy’s algorithm
based on Gaussian elimination.

I Bienaymé noted that the Cauchy’s choice of Z was not
optimal in the least squares sense. Least squares solution
if Z = A (normal equations) or more generally if
R(Z ) = R(A). The matrix Z can be determined a column
at a time as the elimination steps are carried out.
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3× 3 example


zT
1 a1 zT

1 a2 zT
1 a3

zT
2 a1 zT

2 a2 zT
2 a3

zT
3 a1 zT

3 a2 zT
3 a3




x1

x2

x3

 =


zT
1 b

zT
2 b

zT
3 b


Transform i , jth element (2 ≤ i , j ≤ 3)

zT
i aj −

zT
i a1

zT
1 a1

zT
1 aj = zT

i

(
aj −

zT
1 aj

zT
1 a1

a1

)
≡ zT

i a
(2)
j ,

Steven Leon, Åke Björck, Walter Gander Gram-Schmidt Orthogonalization: 100 Years and More



Bienaymé Reduction

The reduced system has the form zT
2 a

(2)
2 zT

2 a
(2)
3

zT
3 a

(2)
2 zT

3 a
(2)
3

  x2

x3

 =

 zT
2 b(2)

zT
3 b(2)


where we have defined

a
(2)
j = aj −

zT
1 aj

zT
1 a1

a1, b(2) = b − zT
1 b

zT
1 b

a1.

Finally z3 is chosen and used to form the single equation

zT
3 a

(3)
3 x3 = zT

3 b(3).

Taking the first equation from each step gives a triangular system
defining the solution.
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An interesting choice of Z

Since we want R(Z ) = R(A), if we choose Z = Q where

q1 = a1, q2 = a
(2)
2 , q3 = a

(3)
3 , . . .

Then we have

q2 = a2 −
qT
1 a2

qT
1 q1

q1, q3 = a
(2)
3 −

qT
2 a

(2)
3

qT
2 q2

q2, . . . ,

which is exactly the modified Gram-Schmidt procedure!
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Jørgen Pedersen Gram (1850–1916)

I Dual career: Mathematics
(1873) and Insurance
(1875, 1884)

I Research in modern
algebra, number theory,
models for forest
management, integral
equations, probability,
numerical analysis.

I Active in Danish Math
Society, edited Tidsskrift
journal (1883–89).

I Best known for his
orthogonalization process
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J. P. Gram: 1879 Thesis and 1883 paper

I Series expansions of real functions using least squares

I Orthogonalization process applied to generate orthogonal
polynomials

I Data approximation using discrete inner product

I Determinantal representation for resulting orthogonal
functions

I Continuous inner products

I Application to integral equations
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Erhard Schmidt (1876–1959)

I Ph.D. on integral
equations, Gottengin 1905

I Student of David Hilbert

I 1917 University of Berlin,
set up Inst for Applied
Math

I Director of Math Res Inst
of German Acad of Sci

I Known for his work in
Hilbert Spaces

I Played important role in
the development of
modern functional analysis
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Schmidt 1907 paper

I p 442 CGS for sequence of functions φ1, . . . , φn with respect
to inner product

〈f , g〉 =

∫ b

a
f (x)g(x)dx

I p 473 CGS for an infinite sequence of functions

I In footnote (p 442) Schmidt claims that in essence the
formulas are due to J. P. Gram.

I 1935 Y. K. Wong paper refers to “Gram-Schmidt
Orthogonalization Process” (First such linkage?)
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Original algorithm of Schmidt for CGS

ψ1(x) =
φ1(x)√∫ b

a φ1(y)2dy

ψ2(x) =
φ2(x)− ψ1(x)

∫ b
a φ2(z)ψ1(z))dz√∫ b

a (φ2(y)− ψ1(y)
∫ b
a φ2(z)ψ1(z))dz)2dy

...

ψn(x) =
φn(x)−

∑ρ=n−1
ρ=1 ψρ(x)

∫ b
a φn(z)ψρ(z)dz√∫ b

a (φn(x)−
∑ρ=n−1

ρ=1 ψρ(x)
∫ b
a φn(z)ψρ(z)dz)2dy
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Åke Björck

I Specialist in Numerical
Least Squares

I 1967 Solving Least
Squares Problems by
Gram-Schmidt
Orthogonalization

I 1992 Björck and Paige:
Loss and recapture of
orthogonality in MGS

I 1994 Numerics of
Gram-Schmidt
Orthogonalization

I 1996 SIAM: Numerical
Methods for Least Squares
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Stability of MGS for Least Squares

I Forward Stability (Björck, 1967) and Backward Stability
(Björck and Paige, 1992)

I If A has computed MGS factorization Q̃R̃
I Loss of orthogonality in MGS

‖I − Q̃T Q̃‖2 ≤
c1(m, n)

1− c2(m, n)κu
κu

I Stability

A + E = QR̃ where ‖E‖ ≤ c(m, n)u‖A‖2 and QTQ = I

I b must be modified as if it were an n + 1st column of A
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Björck and Paige 1992

Ã =

 O
A

 = Q̃R̃ =

 Q̃11 Q̃12

Q̃21 Q̃22

  R̃1

O


where Q̃ = H1H2 · · ·Hn (a product of Householder matrices)

Q̃11 = O and A = Q̃21R̃1

(C. Sheffield) Q̃21R̃1 and A = QR (MGS) numerically equivalent
In fact if Q = (q1, . . . ,qn) then

Hk = I − vkv
T
k , k = 1, . . . , n

where

vk =

 −ek

qk

 , k = 1, . . . , n
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Loss of Orthogonality in CGS

I With CGS you could have catastrophic cancellation.

I Gander 1980 - Better to compute Cholesky factorization
of ATA and then set Q = AR−1

I Smoktunowicz, Barlow, and Langou, 2006
If ATA is numerically nonsingular and “the Pythagorean
version of CGS” is used then the loss of orthogonality is
proportional to κ2
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Pythagorean version of CGS

Computation of diagonal entry rkk at step k.

I CGS: rkk = ‖wk‖2 where wk = ak −
∑k−1

i=1 rikqi

I CGSP: If

sk = ‖ak‖ and pk =

k−1∑
i=1

r2
ik


1/2

then r2
kk + p2

k = s2
k and hence

rkk = (sk − pk)1/2(sk + pk)1/2

Steven Leon, Åke Björck, Walter Gander Gram-Schmidt Orthogonalization: 100 Years and More



Heinz Rutishauser (1918–1970)

I Pioneer in Computer
Science and
Computational
Mathematics

I Long history with ETH
as both student and
distinguished faculty

I Selective
Reorthogonalization for
MGS

I Superorthogonalization
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Classic Gram-Schmidt

CGS Algorithm

Q = A;
for k = 1 : n

for i = 1 : k − 1;
R(i , k) = Q(:, i)′ ∗ Q(:, k);

end (Omit this line for CMGS)

for i = 1 : k − 1, (Omit this line for CMGS)

Q(:, k) = Q(:, k)− R(i , k) ∗ Q(:, i);
end
R(k, k) = norm(Q(:, k));
Q(:, k) = Q(:, k)/R(k, k);

end
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Columnwise MGS

CMGS Algorithm

Q = A;
for k = 1 : n

for i = 1 : k − 1
R(i , k) = Q(:, i)′ ∗ Q(:, k);
Q(:, k) = Q(:, k)− R(i , k) ∗ Q(:, i);

end
R(k, k) = norm(Q(:, k));
Q(:, k) = Q(:, k)/R(k, k);

end
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Reorthogonalization

I Iterative orthogonalization - As each qk is generated
reorthogonalize with respect to q1, . . . ,qk−1

I Twice is enough (W. Kahan), (Giraud, Langou, and
Rozložnik, 2002)

I The algorithms MGS2, CGS2

I Selective reorthogonalization
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To reorthogonalize or not to reorthogonalize

I For most applications it is not necessary to reorthogonalize if
MGS is used

I Both MGS least squares and MGS GMRES are backward
stable

I In many applications it is important that the residual vector r
be orthogonal to the column vectors of Q.

I In these cases if MGS is used, r should be reorthogonalized
with respect to qn,qn−1, . . . ,q1 (note the reverse order)
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Selective reorthogonalization

I Reorthogonalize when loss of orthogonality is detected.

b = ak −
k−1∑
i=1

rikqi

Indication of cancellation if ‖b‖ << ‖ak‖

I (1967) Rutishauser test: Reorthogonalize if ‖b‖ ≤ 1
10
‖ak‖
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Selective reorthogonalization

I The Rutishauser reorthogonalization condition can be
rewritten as

‖ak‖
‖b‖

≥ 10 or more generally
‖ak‖
‖b‖

≥ K

I There are many papers using different values of K .
Generally 1 ≤ K ≤ κ2(A); popular choice is K =

√
2.

Hoffman, 1989, investigates a range of K values.

I Giraud and Langou, 2003
I Loss of orthogonality possible for any choice of K
I Alternate condition ∑k−1

i=1 |rik |
rkk

> L
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Rutishauser Superorthogonalization

The vectors x and y are numerically orthogonal if

|fl(xTy)| ≤ ε‖x‖‖y‖ (1)

In general

|xTy − fl(xTy)| ≤ γn|x|T |y| (2)

γn = nε/(1− nε), |x| is the vector with elements |xi |

If x and y are orthogonal, then (2) becomes

|fl(xTy)| ≤ γn|x|T |y| (3)

We say that x and y are numerically superorthogonal if (3) is
satisfied.
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Rutishauser Orthno algorithm

Rutishauer’s Orthno algorithm contains a routine for
superothogonalizing vectors.

The basic idea is to keep orthogonalizing x and y until (3) is
satisfied.

The actual stopping condition used is:
While

|x|T |y|+ |xTy|
10

> |x|T |y|

reorthogonalize x and y
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Superorthogonalization Example

x =


1

10−40

10−20

10−10

10−15

 , y =


10−20

1
10−10

10−20

10−10


are numerically orthogonal, however

|xTy| ≈ 10−20 and |x|T |y| ≈ 10−20

Perform two reorthogonalizations: y → y(2) → y(3)
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Superorthogonalization Calculations

x y y(2) y(3)

1e+00 1e−20 −1.000019999996365e−25 −1.000020000000000e−25
1e−40 1e+00 1.000000000000000e+00 1.000000000000000e+00
1e−20 1e−10 1.000000000000000e−10 1.000000000000000e−10
1e−10 1e−20 9.999999998999989e−21 9.999999998999989e−21
1e−15 1e−10 1.000000000000000e−10 1.000000000000000e−10

Decrease in scalar products

|xTy| = 1e−20

|xTy(2)| = 3.6351e−37

|xTy(3)| = 0
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Conclusions

I Orthogonality plays a fundamental role in
applied mathematics.

I The Gram-Schmidt algorithms are at the core of
much of what we do in computational
mathematics.

I Stability of GS is now well understood.
I The GS Process is central to solving least

squares problems and to Krylov subspace
methods.

I The QR factorization paved the way for modern
rank revealing factorizations.

I What will the future bring?
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