MTH 142 - Practice Exam - Chapters 9-11

Calculus II With Analytic Geometry Fall 2011 - University of Rhode Island

- This practice exam is intended to help you prepare for the final exam for MTH 142 Calculus II.
- This practice exam is **NOT** intended to be your only resource in preparing for the exam. Do **NOT** use this in place of your course notes, previous exams, quizzes, homework, and online homework.
- Questions that do not appear on this practice exam may appear on the actual final exam, and just because a question appears on this practice exam does not guarantee a similar question will appear on the actual final exam.
- Also note that this practice exam is not intended to give you an idea of the length of the actual
 exam.

Good luck!

- 1. For the sequence $s_n = 1 n^2$ (not a series, the sequence!), choose the option that describes its behavior as $n \to \infty$.
 - (a) Converges to 0, and all s_n are positive values
 - (b) Diverges to $-\infty$
 - (c) Converges to 0, and s_n takes on both positive and negative values
 - (d) Diverges to $+\infty$
 - (e) Converges to 1
- 2. For the sequence $s_n = \cos(1/n)$ (not a series, the sequence!), choose the option that describes its behavior as $n \to \infty$.
 - (a) Converges to 0, and all s_n are positive values
 - (b) Converges to 0, and s_n takes on both positive and negative values
 - (c) Converges to 1
 - (d) Diverges to $-\infty$
 - (e) Diverges to $+\infty$
- 3. Find the sum of the series $\sum_{n=0}^{\infty} (3/2^n)$ if it converges.
 - (a) 3
 - (b) 6
 - (c) Diverges
 - (d) 9
 - (e) 2

- 4. Find c such that $\sum_{n=0}^{\infty} c^n$ converges to 10.
 - (a) 11/10
 - (b) 9/10
 - (c) No such c exists
 - (d) 10/9
 - (e) 10/11
- 5. Classify $\sum_{n=2}^{\infty} \frac{n^{3/2}}{n^2-1}$ as convergent or divergent, and give a correct reason for your answer.
 - (a) Divergent: $\lim_{n\to\infty} a_n \neq 0$.
 - (b) Divergent: Comparison test with the harmonic series.
 - (c) Convergent: $\lim_{n\to\infty} a_n = 0$.
 - (d) Convergent: Geometric series with ratio 1/2 < 1.
 - (e) Divergent: Comparison test with a geometric series.
- 6. Classify $\sum_{n=1}^{\infty} \frac{1}{n \cdot 5^n}$ as convergent or divergent, and give a correct reason for your answer.
 - (a) Divergent: Comparison test with the harmonic series.
 - (b) Convergent: Comparison test $\sum_{n=1}^{\infty} \frac{1}{n^5}$.
 - (c) Convergent: Comparison test with $\sum_{n=1}^{\infty} (1/5)^n$.
 - (d) Convergent: $\lim_{n\to\infty} a_n = 0$.
 - (e) Divergent: $\lim_{n\to\infty} a_n \neq 0$.
- 7. Classify $\sum_{n=1}^{\infty} \frac{3^n + 4^n}{e^n}$ as convergent or divergent and give a correct reason for your answer.
 - (a) Divergent: $\lim_{n\to\infty} a_n \neq 0$.
 - (b) Divergent: constant multiple of the harmonic series.
 - (c) Convergent: sum of two convergent geometric series.
 - (d) Convergent: Comparison test with geometric series with ratio e/4.
 - (e) Convergent: Comparison test with geometric series with ratio 3/e.

- 8. Classify $\sum_{n=1}^{\infty} \frac{3^n}{(n+1)!}$ as convergent or divergent, and give a correct reason for your answer.
 - (a) Convergent: Ratio test with limiting ratio 0.
 - (b) Convergent: $\lim_{n\to\infty} a_n = 0$.
 - (c) Divergent: Comparison test with the geometric series $\sum_{n=1}^{\infty} 3^n$.
 - (d) Divergent: Ratio test with limiting ratio 3.
 - (e) Divergent: $\lim_{n\to\infty} a_n \neq 0$.
- 9. Classify $\sum_{n=1}^{\infty} \frac{(n+3)!}{n^2 \cdot 3^n}$ as convergent or divergent, and give a correct reason for your answer.
 - (a) Convergent: $\lim_{n\to\infty} a_n = 0$.
 - (b) Divergent: Ratio test with limiting ratio ∞ .
 - (c) Convergent: Ratio test with limiting ratio 1/3.
 - (d) Convergent: Comparison test with the geometric series $\sum_{n=1}^{\infty} (1/3)^n$.
 - (e) Divergent: Integral test.
- 10. Find the radius of convergence of $\sum_{n=1}^{\infty} x^{n+1} 2(n+1).$
 - (a) 1
 - (b) $1/\sqrt{2}$
 - (c) $\sqrt{2}$
 - (d) 2
 - (e) 1/2
- 11. Find the radius of convergence of $\sum_{n=1}^{\infty} \frac{n}{3^n} (x-1)^n$.
 - (a) ∞
 - (b) $\frac{3n}{n+1}$
 - (c) $\frac{n+1}{3n}$
 - (d) 3
 - (e) 1

- 12. Find the interval of convergence, including any endpoints, of the series $\sum_{n=0}^{\infty} x^{2n}$.
 - (a) $-2 \le x \le 2$
 - (b) $-1 \le x \le 1$
 - (c) $-1 < x \le 1$
 - (d) -1 < x < 1
 - (e) $-1 \le x < 1$
- 13. Find the interval of convergence, including any endpoints, of the series $\sum_{n=1}^{\infty} \frac{(x-2)^n}{n^2}.$
 - (a) $-\infty < x < \infty$
 - (b) 1 < x < 3
 - (c) $-1 \le x \le 1$
 - (d) -1 < x < 1
 - (e) $1 \le x \le 3$
- 14. Find the interval of convergence, including any endpoints, of the series $\sum_{n=1}^{\infty} \frac{(x+3)^n}{n}$.
 - (a) $-4 < x \le -2$
 - (b) -4 < x < -2
 - (c) $2 \le x < 4$
 - (d) $-4 \le x \le -2$
 - (e) $2 < x \le 4$
- 15. Find the interval of convergence, including any endpoints, of the series $\sum_{n=1}^{\infty} \frac{(-1)^n (x-5)^n}{n}.$
 - (a) $4 < x \le 6$
 - (b) $-\infty < x < \infty$
 - (c) 4 < x < 6
 - (d) $4 \le x \le 6$
 - (e) $4 \le x < 6$
- 16. Find the Taylor polynomial of degree 3 for xe^{-x} about x=0.
 - (a) $x x^2 + x^3/2$
 - (b) $x + x^2/2 + x^3/6$
 - (c) $1 x + x^2/2 x^3/6$
 - (d) $x + x^2 + x^3/2$
 - (e) $x x^2/2 + x^3/3$

17. Find the Taylor polynomial $P_3(x)$ for $f(x) = e^{(x^2)}$ about x = 0.

(a)
$$1+x+\frac{x^2}{2}+\frac{x^3}{6}$$

(b)
$$1 + x + 2x^2 + 3x^3$$

(c)
$$1 + x + x^2$$

(d)
$$1 + x^2$$

(e)
$$1 + x^2 + x^3$$

18. Find the binomial series for $f(x) = (1+x)^{1/2}$ about x = 0.

(a)
$$\frac{x}{2} - \frac{x^2}{4} + \frac{3x^3}{8} - \frac{5x^4}{16} + \cdots$$

(b)
$$1 - \frac{x}{2} + \frac{x^2}{8} - \frac{x^3}{16} + \cdots$$

(c)
$$1 - \frac{x}{2} + \frac{x^2}{4} - \frac{3x^3}{8} + \cdots$$

(d)
$$1 + \frac{x}{2} - \frac{x^2}{8} + \frac{x^3}{16} - \cdots$$

(e)
$$1 + \frac{x}{2} - \frac{x^2}{4} + \frac{3x^3}{8} - \cdots$$

19. Find the binomial series representing $\left(1+\frac{x}{2}\right)^{5/2}$ near x=0.

(a)
$$1 + \frac{5x}{4} + \frac{15x^2}{32} + \frac{5x^3}{128} + \cdots$$

(b)
$$1 + \frac{5x}{2} + \frac{15x^2}{16} + \frac{3x^3}{16} + \cdots$$

(c)
$$1 + \frac{5x}{2} + \frac{15x^2}{4} + \frac{45x^3}{4} + \cdots$$

(d)
$$1 + \frac{5x}{4} + \frac{15x^2}{8} + \frac{45x^3}{32} + \cdots$$

(e)
$$1 + \frac{5x}{2} + \frac{15x^2}{4} + \frac{15x^3}{8} + \cdots$$

20. Give the formula for the elementary function represented by the series $1 + x^2 + x^4 + x^6 + x^8 + \cdots$ within its interval of convergence.

(a)
$$1/(1-x^2)$$

(b)
$$1/(1+x^2)$$

(c)
$$[1/(1-x)]^2$$

(d)
$$x^2(1-x)$$

(e)
$$[1/(1+x)]^2$$

- 21. Find the sum of the series $\sum_{n=0}^{\infty} \frac{3^n}{n!}$.
 - (a) ∞
 - (b) $\sin(3)$
 - (c) $\cos(3)$
 - (d) e^{3}
 - (e) 3e
- 22. Give the formula for the elementary function represented by the series $x^2 + x^3 + \frac{x^4}{2!} + \frac{x^5}{3!} + \frac{x^6}{4!} + \cdots$ within its interval of convergence.
 - (a) $e^{(x^2)}$
 - (b) $x^2/(1+x)$
 - (c) xe^x
 - (d) $x^2 e^x$
 - (e) $x^2/(1-x)$
- 23. Give the formula for the elementary function represented by the series $-x^2 + \frac{x^4}{3!} \frac{x^6}{5!} + \frac{x^8}{7!} \cdots$ within its interval of convergence.
 - (a) $-\cos(x^2)$
 - (b) $-x(\sin x)$
 - (c) $x^2 \cos(x)$
 - (d) $e^{(-x^2)}$
 - (e) $-\sin(x^2)$
- 24. Find the Taylor series for e^{2x} about x = 0.
 - (a) $1 + 2x + x^2 + (1/3)x^3 + \cdots$
 - (b) $1 + 4x^2 + 16x^4 + 64x^6 + \cdots$
 - (c) $1 + 2x + 4x^2 + 8x^3 + \cdots$
 - (d) $1+2x+2x^2+(4/3)x^3+\cdots$
 - (e) $1 + 2x^2 + (2/3)x^4 + (4/45)x^6 + \cdots$
- 25. Find the Taylor series for $x^3 \cos x$ about x = 0.
 - (a) $x^3 + x^4 + x^6/2 + x^7/6 + \cdots$
 - (b) $x^3 x^5/2! + x^7/4! x^9/6! + \cdots$
 - (c) $x^3/3! + x^4/4! + x^6/6! + x^7/7! + \cdots$
 - (d) $x^3/3! x^5/5! + x^7/7! x^9/9! + \cdots$
 - (e) $1 x^6/2! + x12/4! x^{18}/6! + \cdots$

26. Select the differential equation below corresponding to the slope field pictured.

- (a) $\frac{dy}{dx} = x^2 1$
- $\text{(b) } \frac{dy}{dx} = y^2 x^2$
- (c) $\frac{dy}{dx} = y + 1$
- (d) $\frac{dy}{dx} = x/y$
- (e) $\frac{dy}{dx} = xy$
- 27. Select the differential equation below corresponding to the slope field pictured.

- (a) $\frac{dy}{dx} = \cos(x)$
- (b) $\frac{dy}{dx} = xy$
- $(c) \frac{dy}{dx} = y^2 1$
- (d) $\frac{dy}{dx} = x y$
- (e) $\frac{dy}{dx} = -x^2$

28. Select the differential equation below corresponding to the slope field pictured.

- (a) $\frac{dy}{dx} = y(1-y)$
- (b) $\frac{dy}{dx} = (1-x)(1+y)$
- (c) $\frac{dy}{dx} = (1 y)(1 + y)$
- (d) $\frac{dy}{dx} = -x/y$
- (e) $\frac{dy}{dx} = y^2 1$
- 29. Consider the differential equation dy/dx = x y. Let y = f(x) be the solution of this equation containing the point (0, 2). Estimate f(1) using Euler's method with $\Delta x = 1/2$.
 - (a) 19/4
 - (b) 15/4
 - (c) 1/2
 - (d) 1
 - (e) 3/4
- 30. Consider the differential equation $\frac{dy}{dx} = \frac{x+y}{y}$. Let y = f(x) be the solution of this equation containing the point (0,1). Estimate f(1/2) using Euler's method with $\Delta x = 1/4$.
 - (a) 17/10
 - (b) 27/20
 - (c) 13/10
 - (d) 49/20
 - (e) 31/20

- 31. Solve the differential equation $dy/dx = y^2 \sin 2x$.
 - (a) $-2/y = (\cos 2x) + C$
 - (b) $1/y = (\cos 2x) + C$
 - (c) $2/y = (\cos 2x) + C$
 - (d) $y^3/3 = -(\cos 2x)/2 + C$
 - (e) $-1/y = (\cos 2x) + C$
- 32. Solve the differential equation $dy/dx = \sqrt{x}\sqrt{y}$.
 - (a) $-\sqrt{y} = (1/3)x^{3/2} + C$
 - (b) $-1/\sqrt{y} = (2/3)x^{3/2} + C$
 - (c) $1/\sqrt{y} = (2/3)x^{3/2} + C$
 - (d) $\sqrt{y} = (1/3)x^{3/2} + C$
 - (e) $-\sqrt{y} = (2/3)x^{3/2} + C$
- 33. Find the solution of the differential equation $dy/dx = \sqrt{x+1}\sqrt{y+5}$ such that y=4 when x=3.
 - (a) $y = \sqrt{x+1}\sqrt{y+5} 2$
 - (b) $2/\sqrt{y+5} = (1/3)(x+1)^{3/2} 2$
 - (c) $1/\sqrt{y+5} = (1/3)(x+1)^{3/2} 7/3$
 - (d) $\sqrt{y+5} = (1/3)(x+1)^{3/2} + 1/3$
 - (e) $\sqrt{y+5} = (2/3)(x+1)^{3/2} 7/3$
- 34. Solve the initial value problem dy/dx = y/x, y = 2 when x = 1. Express your answer in the form y = f(x).
 - (a) $y = e\sqrt{x}$
 - (b) $y = 2\sqrt{x}$
 - (c) $y = e^4 x^2$
 - (d) y = 2x
 - (e) $y = e^2 x$
- 35. Solve the initial value problem dy/dx = y/x, y = 2 when x = 1. Express your answer in the form y = f(x).
 - (a) y = 2x
 - (b) $y = 2\sqrt{x}$
 - (c) $y = e^4 x^2$
 - (d) $y = e^2 x$
 - (e) $y = e\sqrt{x}$

Practice Exam Solutions

	Tractice Exam 5010
1.	В
2.	$^{\mathrm{C}}$
3.	В
4.	В
5.	В
0.	Б
6.	\mathbf{C}
7.	A
8.	A
9.	В
10.	A
10.	
11.	D
12.	D
13.	${f E}$
14.	В
15.	A
10.	11
16.	A
17.	D
18.	D
19.	A
20.	A
20.	11
21.	D
22.	D
23.	В
24.	D
25.	В
_0.	D
26.	D
27.	A
28.	\mathbf{C}
29.	${f E}$
30.	${ m E}$
31.	С
32.	D
33.	D
34.	D
35.	A
	•