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Abstract

Let L = (L1,L2) be a list consisting of a sublist L1 of powers of irreducible (monic) scalar polynomials over
an algebraically closed field F, and a sublist L2 of nonnegative integers. For an arbitrary such list L, we give
easily verifiable necessary and sufficient conditions for L to be the list of elementary divisors and minimal
indices of some T -palindromic quadratic matrix polynomial with entries in the field F. For L satisfying
these conditions, we show how to explicitly construct a T -palindromic quadratic matrix polynomial having
L as its structural data; that is, we provide a T -palindromic quadratic realization of L. Our construction of
T -palindromic realizations is accomplished by taking a direct sum of low bandwidth T -palindromic blocks,
closely resembling the Kronecker canonical form of matrix pencils. An immediate consequence of our in-depth
study of the structure of T -palindromic quadratic polynomials is that all even grade T -palindromic matrix
polynomials have a T -palindromic strong quadratification. Finally, using a particular Möbius transformation,
we show how all of our results can be easily extended to quadratic matrix polynomials with T -even structure.

Keywords: matrix polynomials, quadratic realizability, elementary divisors, minimal indices,
quasi-canonical form, quadratifications, T -palindromic, inverse problem
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1. Introduction

An m× n matrix polynomial P (λ) of degree k over a field F is of the form

P (λ) =

k∑
i=0

λiAi , (1.1)

where Ai ∈ Fm×n, for i = 0, 1, . . . , k, and Ak 6= 0. Matrix polynomials arise in a variety of scientific and
engineering problems, and consequently they often have special algebraic structures stemming from the
underlying applications – examples of such polynomials include symmetric, Hermitian, T -alternating and
T -palindromic [1, 6, 16, 21, 22, 23, 26, 29, 37, 43, 44]. This work is primarily focused on T -palindromic
matrix polynomials which, in its most elementary version, are polynomials (1.1) satisfying ATk−i = Ai, for
i = 0, 1, . . . , k (see Definition 2.5 for the more general notion of T -palindromicity considered in this paper,
which uses grade instead of degree). Leveraging the properties of Möbius transformations, we show how
all of our results can also be extended to polynomials with T -even (alternating) structure. Note that both
T -palindromic and T -alternating matrix polynomials are square, i.e., m = n in (1.1).

The main objective of this paper is to fill several outstanding gaps in the theory of structured inverse
problems for quadratic matrix polynomials. In general, the inverse problem for matrix polynomials that we
will consider has two aspects:
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(i) Given a list L = (L1,L2), where L1 is a list of scalar polynomials and L2 is a list of nonnegative
integers, determine whether or not there exists any matrix polynomial P (λ) such that the elementary
divisors of P are given by L1 and the minimal indices of P are given by L2.

(ii) Whenever there exists such a polynomial P , show how to explicitly construct it, preferably in a way
that transparently displays the elementary divisors and minimal indices of P .

It is well known that the Kronecker canonical form provides a complete solution to this inverse problem
for polynomials P of degree at most one [19], at least when the underlying field F is algebraically closed.
However, the story becomes much more interesting if one requires P to have a particular size or a degree
larger than one, or to have some additional algebraic structure (e.g., symmetric, Hermitian, alternating,
palindromic, etc).

Inverse problems of this kind have been of interest at least since the 1970s [36, Thm. 5.2], and have also
been considered in the classical reference on matrix polynomials [20]. In the last few years, there has been
renewed interest in this problem, not only due to its theoretical importance, but also because of connections
with other problems (e.g., the stratification of orbits of matrix polynomials [24]). Some of the more recent
developments regarding inverse problems for matrix polynomials include the following:

• A characterization for a list of scalar polynomials and nonnegative integers to be the list of elementary
divisors and minimal indices, respectively, of some matrix polynomial of fixed degree and full rank [24,
Thm. 5.2].

• A characterization for a list of scalar polynomials and nonnegative integers to be the list of elementary
divisors and minimal indices, respectively, of some matrix polynomial of fixed size and degree (over
any infinite field), and not necessarily of full rank [12, Thm. 3.12]. This includes [24, Thm. 5.2] as a
special case.

• Necessary conditions for a matrix polynomial to be the Smith form of a T -palindromic [32], a T -
alternating [31], or a skew-symmetric matrix polynomial [33]. In the regular case, these conditions
for T -palindromic and T -alternating polynomials have also (under some mild additional assumptions)
been shown to be sufficient [2, Thm. 3.1].

• A characterization for a pair of matrices to be the Jordan structure of a quadratic real symmetric
matrix polynomial [25, Thm. 9]. A characterization is also provided for polynomials having a positive
definite leading and/or trailing coefficient [25, Thms. 13, 14, 17]. All of these results are restricted to
the case of polynomials with semisimple eigenvalues.

In this paper we focus on a particular type of inverse problem that we refer to as the Quadratic Realiz-
ability Problem (QRP), consisting of two subproblems (SPs):

(SP-1) Characterization of those structural data lists L = (L1,L2), where L1 is a list of scalar polynomials
and L2 is a list of nonnegative integers, that comprise the spectral structure (i.e., the elementary
divisors L1) and singular structure (minimal indices L2) of some quadratic matrix polynomial in a
given class C .

(SP-2) For each such realizable list L, show how to concretely construct a quadratic matrix polynomial in C
whose structural data is exactly the list L. It is also desirable for this concrete realization to be as
simple, transparent, and canonical1 as possible.

The work [12, Thm. 3.12] mentioned earlier provides a solution of the QRP for the class C of all m × n
matrix polynomials (over an arbitrary infinite field), whereas [24, Thm. 5.2] solves the QRP for the smaller

1By “canonical” we mean that the realization is unique for a fixed list L.
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class C of all m × n quadratic polynomials of full rank. However, the solutions of (SP-2) provided in [12]
and [24] are neither simple, transparent, nor canonical.

The present work provides complete solutions to the QRP when C is either the class of T -palindromic
or the class of T -even (quadratic) matrix polynomials, and F is an algebraically closed field. We obtain our
results by developing a Kronecker-like quasi-canonical form for quadratic T -palindromic matrix polynomials.
By “Kronecker-like” we mean a matrix polynomial that is built up as a direct sum of canonical blocks, each
of which realizes the structural data corresponding to a certain small portion of the given list L, in the same
kind of transparent way as the blocks in the Kronecker canonical form contain the information of either the
Jordan chains or the minimal indices of matrix pencils [19, Ch. XII, §4]. Note that these “direct-sum-of-
structured-blocks” constructions of quadratic matrix polynomials are very much in the spirit of the solutions
of the structured inverse problems for palindromic and even matrix pencils found in [40, 41, 42].

The phrase “quasi-canonical” here refers to the possible lack of uniqueness in this realization. More
precisely, it is possible for two essentially different direct sums of quadratic Kronecker-like blocks (i.e., direct
sums not related by mere permutation of blocks) to have the same structural data. Consequently, there
exist some quadratically realizable structural data lists L that can be realized by essentially different direct
sums of canonical blocks, thus showing that our quadratic realizations are not always unique.

Our work is closely connected to, and has grown out of, several ongoing QRP projects [10, 28, 35]. In
particular, [28] provides a similar Kronecker-like quasi-canonical form for (unstructured) regular quadratic
matrix polynomials. In [10], the general case of all quadratic matrix polynomials (regular and singular)
is addressed. Finally, [35] obtains a Kronecker-like quasi-canonical form for Hermitian quadratic matrix
polynomials.

Our interest in T -palindromic quadratic matrix polynomials is twofold. From the theoretical standpoint,
it is desirable to have a systematic in-depth study of the spectral and singular structure of T -palindromic
quadratic polynomials. More importantly from the practical viewpoint, T -palindromic quadratic polyno-
mials can play a role in obtaining solutions to structured polynomial eigenvalue problems of higher degree
[22]. Recall that for a given matrix polynomial P (λ) the standard way to solve the associated polynomial
eigenvalue problem, or more generally to compute the complete spectral and singular structure of P (λ),
is by means of strong linearizations. Recall that strong linearizations of P (λ) are just the matrix pencils
that have the same finite and infinite elementary divisors, including repetitions, and the same number of
left and right minimal indices as P . The most commonly used strong linearizations are the so-called Frobe-
nius companion forms [11, 20], though other examples of strong linearizations have also been studied, e.g.,
Fiedler-like linearizations [3, 4, 8] and linearizations from the ansatz spaces L1(P ) and L2(P ) [30]. With a
strong linearization in hand one can employ existing numerical methods for computing the structural data
of matrix pencils [13, 14], and thus determine the structural data of the underlying matrix polynomial.

When a matrix polynomial P (λ) has additional algebraic structure, e.g., alternating, Hermitian, palin-
dromic, or symmetric, its spectral and singular structures also enjoy certain symmetries – see for example
[7], [29, Table 2.2], or more specifically Remark 2.6 for the T -palindromic structure considered in this paper.
When solving a structured polynomial eigenvalue problem it is desirable to employ a strong linearization
with the same algebraic structure. Using a structure-preserving eigenvalue algorithm on a structured lin-
earization then ensures that the computed eigenvalues have the same symmetry as the exact eigenvalues
of the underlying structured matrix polynomial. This is important from a practical standpoint, since the
symmetry in the exact spectral and singular data of a structured matrix polynomial can usually be traced
to an intrinsic property of the underlying physical problem modeled by such a polynomial. The fact that
most of the commonly used linearizations (Frobenius companion forms and Fiedler pencils) do not preserve
any algebraic structure of a matrix polynomial inspired an intensive search for structured linearizations of
T -alternating and T -palindromic polynomials [5, 9, 31].

Despite success in identifying structured linearizations in many cases, others remained more elusive. In
[32] the authors showed that all T -palindromic matrix polynomials of odd degree have a T -palindromic
strong linearization, but that there exist T -palindromic matrix polynomials of even degree for which it is
impossible to find a structure-preserving linearization. The existence of such even-degree T -palindromic
polynomialsW (λ) inspired a new structure-preserving approach: look instead for a quadratic T -palindromic
matrix polynomial Q(λ) that has the same finite and infinite elementary divisors, including repetitions,
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and the same number of left and right minimal indices as W (λ). We refer to such a Q(λ) as a strong
quadratification of W (λ). An example of a family of companion-like T -palindromic strong quadratifications
for T -palindromic matrix polynomials of even degree has been presented in [22, Thm. 3]2. Consequently,
all T -palindromic matrix polynomials of even degree have a T -palindromic strong quadratification. The
results in this paper also give that result (see Corollary 6.3), and much more. For example, our in-depth
analysis also allows the characterization of those T -palindromic matrix polynomials of odd degree that have
a T -palindromic strong quadratification (see Corollary 6.4).

The paper is organized as follows. In Section 2 we establish the notation and review basic concepts about
matrix polynomials relevant to this paper. In particular, Section 2.1 recalls the definition of T -palindromic
matrix polynomials and the main features of the spectral and singular structure of those polynomials.
In Section 3 we describe what is meant by a list of elementary divisors and minimal indices, define new
concepts about such lists that are relevant to the solution of the T -palindromic QRP (namely, p-quad
realizability, p-quad symmetry, p-quad admissibility, p-quad irreducibility, and p-quad partitionability), and
establish the basic properties of these concepts. In Section 3 we also provide a complete breakdown of all p-
quad irreducible lists. The work in Section 3 culminates in a proof of one implication of Theorem 3.17, from
which the solution to (SP-1) of the T -palindromic QRP follows immediately. Section 4 establishes several
auxiliary results that eventually lead to a proof of the other implication of Theorem 3.17. In Section 5
we introduce additional ingredients needed for the solution of (SP-2) of the T -palindromic QRP, i.e., T -
palindromic quadratic realizations for each of the p-quad irreducible lists. All these results allow us to state
and prove in Section 6 the complete solution of the T -palindromic QRP problem (Theorem 6.1), in a very
neat and concise fashion. Section 6 also contains some consequences of Theorem 6.1 for the existence of
T -palindromic quadratifications of arbitrary T -palindromic matrix polynomials. With a clever use of Möbius
transformations, in Section 7 we show how to leverage the solution of the T -palindromic QRP into a solution
of the QRP for T -even matrix polynomials, including results about the existence of T -even quadratifications.
Finally, Section 8 contains a summary of the main contributions of this paper.

2. Background

In this section we introduce the notation and all necessary background to be used throughout the paper.
Most of these notions can be found in recent papers [11, 32] or in the classical monographs [19, 20]; we
include them here for the sake of completeness, as well as to establish a unified notation and terminology.

We use F to denote an arbitrary field and F its algebraic closure. The set of polynomials in the variable
λ with coefficients in F is denoted by F[λ], while F(λ) denotes the field of fractions of F[λ] (i.e., F(λ) is the
field of rational functions over F). An m× n matrix polynomial P (λ) over F is of the form

P (λ) =

k∑
i=0

Aiλ
i , (2.1)

where Ai ∈ Fm×n for i = 0, 1, . . . , k. For the sake of brevity, in many cases when referring to a matrix
polynomial P (λ) we drop the dependence on λ and simply write P .

A matrix polynomial P (λ) as in (2.1) is said to have grade k, which we denote by grade(P ). The degree
of P , denoted by deg(P ), is the largest integer j such that coefficient of λj in P (λ) is nonzero. When Ak 6= 0,
the degree and grade are equal, otherwise grade is strictly larger than the degree. Even though the classical
references on matrix polynomials only consider the notion of degree, several recent papers [11, 34, 38] show
multiple advantages of working with the grade of a matrix polynomial instead of its degree.

A matrix polynomial P (λ) from (2.1) is said to be regular if P (λ) is square (i.e., Ai ∈ Fn×n) and its
determinant is non-identically zero (i.e., the scalar polynomial det(P ) has at least one nonzero coefficient);
otherwise P (λ) is said to be singular. Equivalently, P (λ) is singular when at least one of the vector spaces

2 In [22] the authors use a different notion of quadratification, though in the end the constructed family does consist of
strong quadratifications in the sense of our Definition 6.2.
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over the field F(λ)

Nr(P ) :=
{
x(λ) ∈ F(λ)n×1 : P (λ)x(λ) ≡ 0m×1

}
,

N`(P ) :=
{
y(λ)T ∈ F(λ)1×m : y(λ)TP (λ) ≡ 01×n

}
,

is nontrivial. The spacesNr(P ) andN`(P ) are referred to as the right and left nullspaces of P (λ), respectively.
A matrix polynomial P (λ) is said to be unimodular if det(P ) is a nonzero constant in F. In other words,

a unimodular matrix polynomial is an invertible matrix polynomial whose inverse (over the field F(λ)) is
again a matrix polynomial. Two matrix polynomials P (λ) and Q(λ) are unimodularly equivalent, denoted by
P (λ) ∼ Q(λ), if there are two unimodular matrix polynomials U(λ), V (λ) such that U(λ)P (λ)V (λ) = Q(λ).
The rank of P (λ) is the size of the largest non-identically zero minor of P (λ), and is denoted by rankP ;
this notion is sometimes also referred to as the normal rank [7, 8] of P .

Definition 2.1. (j-reversal, [32, Def. 3.3]) Let P be a nonzero matrix polynomial of degree d. For any
j ≥ d, the j-reversal of P is the matrix polynomial revjP given by

(revjP )(λ) := λjP (1/λ).

In the special case when j = d, i.e., when degree and grade are equal, the j-reversal of P is called the reversal
of P and is denoted by revP .

Theorem 2.2. (Smith form, [18]) Let P (λ) be an m× n matrix polynomial with r = rankP . Then P (λ) is
unimodularly equivalent to

D(λ)m×n := diag
(
d1(λ), . . . , dmin{m,n}(λ)

)
, (2.2)

where

(i) d1(λ), . . . , dr(λ) are monic scalar polynomials (i.e., with leading coefficient equal to 1),

(ii) dr+1(λ), . . . , dmin{m,n}(λ) are identically zero scalar polynomials,

(iii) d1(λ), . . . , dr(λ) form a divisibility chain, i.e., dj(λ) is a divisor of dj+1(λ), for j = 1, . . . , r − 1.

(iv) the polynomials d1(λ), d2(λ), . . . , dr(λ) are uniquely determined by the multiplicative relations

d1(λ)d2(λ) · · · dj(λ) = gcd
{
all j × j minors of P (λ)

}
, for j = 1, . . . , r .

The diagonal matrix D(λ) in (2.2) is thus unique, and is known as the Smith form of P (λ).

The nonzero diagonal elements dj(λ) for j = 1, . . . , r in the Smith form of P are called the invariant
factors or invariant polynomials of P . The roots λ0 ∈ F of the product d1(λ) · · · dr(λ) in (2.2) are the (finite)
eigenvalues of P . We say that λ0 =∞ is an eigenvalue of P whenever 0 is an eigenvalue of revjP . Note that
this definition depends on the choice of the grade j. When P is viewed as having grade j equal to degP ,
then λ0 = ∞ may or may not be an eigenvalue of P , while if P is viewed as having some grade j strictly
larger than the degree, then λ0 =∞ will necessarily be an eigenvalue of P [11, Rem. 6.6].

Definition 2.3. (Partial multiplicities). Let P (λ) be an m×n matrix polynomial of grade k over a field F.

(i) (Finite partial multiplicities). For λ0 ∈ F, we can factor the invariant polynomials di(λ) of P for
1 ≤ i ≤ r as

di(λ) = (λ− λ0)αiqi(λ) , with αi ≥ 0 and qi(λ0) 6= 0.

By the divisibility chain property of the Smith form, the sequence of exponents (α1, . . . , αr) satisfies
the condition 0 ≤ α1 ≤ . . . ≤ αr, and is called the partial multiplicity sequence of P at λ0.
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(ii) (Infinite partial multiplicities). The infinite partial multiplicity sequence of P is the partial multiplicity
sequence of revkP at 0.

A vector polynomial is a vector whose entries are polynomials in the variable λ. For any subspace V of
F(λ)n it is always possible to find a basis consisting entirely of vector polynomials (simply take an arbitrary
basis and multiply each vector by the denominators of its entries). The degree of a vector polynomial is the
greatest degree of its components, and the order of a polynomial basis is defined as the sum of the degrees
of its vectors [17, p. 494]. A minimal basis of V is any polynomial basis of V with least order among all
polynomial bases of V. It can be shown that for any given subspace V ⊆ F(λ)n, the ordered list of degrees
of the vector polynomials in any minimal basis of V is always the same. These uniquely defined degrees are
then called the minimal indices of V [17].

The following definition, which follows [12, Def. 2.17], introduces the most relevant quantities that
appear in the classification of “realizable” T -palindromic quadratic matrix polynomials.

Definition 2.4. (Structural data of a matrix polynomial). Let P (λ) be an m × n matrix polynomial with
grade k over a field F.

(i) (Spectral structure). The (finite) elementary divisors of P are the collection of non-trivial irreducible
factors (with their corresponding exponents) of the invariant polynomials of P , including repetitions. In
particular, the elementary divisors at a finite eigenvalue λ0 ∈ F are the collection of factors (λ− λ0)αi

of the invariant polynomials, with αi > 0. The elementary divisor chain at a finite eigenvalue λ0 ∈ F
is the list ((λ − λ0)αr−g+1 , . . . , (λ − λ0)αr ) of elementary divisors at λ0, where α1 = . . . = αr−g = 0
and 0 < αr−g+1 ≤ . . . ≤ αr.
The infinite elementary divisors of P correspond to the elementary divisors at 0 of revkP . More
specifically, if λβ1 , . . . , λβ` with 0 < β1 ≤ · · · ≤ β` are the elementary divisors at 0 for revkP , then
P has ` corresponding elementary divisors at ∞, denoted ωβ1 , . . . , ωβ` . The list ωβ1 , . . . , ωβ` is also
referred to as the infinite elementary divisor chain of P .

The finite and infinite elementary divisors together comprise the spectral structure of P .

(ii) (Singular structure). The left and right minimal indices of P are the minimal indices of N`(P ) and
Nr(P ), respectively, and together comprise the singular structure of P .

(iii) (Structural data). The structural data of P consists of the elementary divisors (spectral structure) of
P , together with the left and right minimal indices (singular structure) of P .

There are several observations worth highlighting about Definition 2.4(i). More specifically, the quantity
g is the geometric multiplicity of the eigenvalue λ0 of P , that is, the number of elementary divisors of P (λ)
at λ0. Further, since the definition of infinite elementary divisors depends on P having a specified grade k,
we indicate that by referring to the infinite elementary divisors of grade k. Finally, to avoid any possible
confusion between the elementary divisors at zero and those at ∞, we will be denoting the latter ones with
the special notation ωβ .

2.1. Spectral and singular structure of T -palindromic matrix polynomials
In this section we recall some well-known results about T -palindromic matrix polynomials that are needed

throughout the rest of this paper. We begin with the definition of this type of structured polynomial.

Definition 2.5. [29, Table 2.1] (T -palindromic). A nonzero n× n matrix polynomial P of degree k ≥ 0 is
said to be T -palindromic if (revjP )(λ) = PT (λ), for some integer j with j ≥ k.

Before we continue, it is worth mentioning that some references have also included under the name
“T -palindromic polynomials” those P (λ) satisfying the condition (revjP )(λ) = −PT (λ) [32]. More recently,
such matrix polynomials are referred to as T -anti-palindromic [34], and are not studied in this paper.

There are two important observations regarding Definition 2.5. First, matrix polynomials that are T -
palindromic must be square, and second, the T -palindromicity is defined “with respect to grade.” For
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instance, the degree–two scalar polynomial p(λ) = λ2 + λ is T -palindromic with respect to grade 3, since
(rev3 p)(λ) = p(λ). However, (rev2 p)(λ) 6= p(λ), and so p(λ) is not T -palindromic with respect to its degree.
This important fact has been already observed in [32], where the authors proved that if a degree k polynomial
P is T -palindromic, then there is exactly one j ≥ k such that revjP = PT [32, Prop. 4.3]. This j is known
as the grade of palindromicity of P .

In this paper, we adopt a convention that when we refer to a T -palindromic matrix polynomial P with
grade k, we are considering k to be its unique grade of palindromicity. Again, this grade is intrinsic to P ,
it is not a choice, and is not necessarily the same as the degree of P .

We finish this section by recalling some important facts from [32] and [7] about the spectral and singular
structure of T -palindromic matrix polynomials that are relevant to our work in this paper.

Remark 2.6. Let P (λ) be a matrix polynomial over F, with char(F) 6= 2, and assume that P is T -palindromic
with grade of palindromicity k. Then the following statements are true:

(i) If p(λ) = (λ+ 1)α(λ− 1)βq(λ), with q(1) 6= 0 6= q(−1), is any invariant polynomial of P (λ), then q(λ)
is palindromic [32, Thm. 7.6].

(ii) If k is even, then any odd degree elementary divisor of P (λ) associated with either of the eigenvalues
λ0 = ±1 has even multiplicity [32, Cor. 8.2].

(iii) For any β ≥ 1, the elementary divisors λβ and ωβ have the same multiplicity (i.e., they appear the
same number of times) [32, Cor. 8.1].

(iv) The left and right minimal indices of P (λ) coincide. Namely, if η1 ≥ η2 ≥ . . . ≥ ηq and ε1 ≥ ε2 ≥ . . . ≥
εp are the left and right minimal indices of P (λ), respectively, then p = q and ηi = εi, for i = 1, . . . , p
[7, Thm. 3.6].

When F is an algebraically closed field with charF 6= 2, the scalar palindromic polynomial q(λ) in (i) can be
factored as q(λ) = λν

∏m
i=1(λ−ai)(λ−a−1i ) [32, Cor. 5.9]. Thus, for an algebraically closed field F, the finite

elementary divisors of P (λ) associated with eigenvalues a 6= 0,±1 are paired in the form (λ− a)β , (λ− 1
a )β.

3. Solution strategy for the T -palindromic QRP

In this section, we lay out the whole strategy for the solution of the T -Palindromic QRP. Though part
of the content from the previous sections is valid for arbitrary fields, from now on we assume that F is an
algebraically closed field with charF 6= 2. The case when F = R has been considered in [39, Ch. 9], whereas
the case of other non-algebraically closed fields is a subject for future investigation.

We start by introducing some basic concepts about lists of elementary divisors and minimal indices.

Definition 3.1. (Lists of elementary divisors and minimal indices).

(i) A list of finite elementary divisors is a list of the form

Lfin =
{

(λ− a1)α1,1 , . . . , (λ− a1)α1,g1 , . . . , (λ− as)αs,1 , . . . , (λ− as)αs,gs

}
,

where a1, . . . , as ∈ F, with ai 6= aj for i 6= j, and the αi,j’s are positive integers.

(ii) An elementary divisor chain of length g associated with a ∈ F is a list of the form(
(λ− a)α1 , . . . , (λ− a)αg

)
,

with 0 < α1 ≤ α2 ≤ · · · ≤ αg.
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(iii) An elementary divisor chain of length g associated with λ0 =∞ is of the form

L∞ =
(
ωβ1 , . . . , ωβg

)
,

with 0 < β1 ≤ β2 ≤ · · · ≤ βg.

(iv) A list L of elementary divisors and minimal indices is of the form

L =
{
Lfin ; L∞ ; Lleft ; Lright

}
, (3.1)

where Lfin is a list of finite elementary divisors, L∞ is an elementary divisor chain associated with
∞, and Lleft = {η1, . . . , ηq} and Lright = {ε1, . . . , εp} are lists of nonnegative integers.

Definition 3.2. (Partial multiplicities). The exponents αi,1, . . . , αi,gi corresponding to all of the elementary
divisors (λ−ai)αi,1 , . . . , (λ−ai)αi,gi associated with a certain ai ∈ F in Lfin are called the (nonzero) partial
multiplicities of ai in L. Collectively for all ai ∈ F, they are the finite partial multiplicities of L. Similarly,
the exponents β1, . . . , βg corresponding to the exponents in the list L∞ are the (nonzero) infinite partial
multiplicities of L.

Throughout this section we say that L is the list of elementary divisors and minimal indices of a given
matrix polynomial P if the elementary divisors and minimal indices of P are precisely those in L. When
necessary for emphasis, we denote this list by L(P ).

The following definition introduces some key quantities associated with a list L of elementary divisors
and minimal indices, that will appear throughout the entire paper.

Definition 3.3. Let L be a list of elementary divisors and minimal indices as in (3.1).

(i) The total finite degree and the total infinite degree of L, denoted by δfin(L) and δ∞(L), respectively,
are defined by

δfin(L) :=

s∑
i=1

gi∑
j=1

αi,j , and δ∞(L) := β1 + · · ·+ βg ,

where αi,1, . . . , αi,gi , for i = 1, . . . , s, are the (nonzero) finite partial multiplicities of L, and β1, . . . , βg
are the (nonzero) infinite partial multiplicities of L.

(ii) The total degree of L is the number given by δ(L) := δfin(L) + δ∞(L).

(iii) The sum of all minimal indices of L is the number given by

µ(L) :=

p∑
i=1

εi +

q∑
j=1

ηj .

(iv) The length of the longest elementary divisor chain in L is denoted by G(L).

For simplicity, when there is no risk of confusion about which list L is under consideration, we adopt
the convention that the quantities (ii)–(iv) from Definition 3.3 will be denoted by δ, µ, and G, respectively.
Also, note that if L = L(P ) for some matrix polynomial P , then G(L) is the largest geometric multiplicity
of any finite or infinite eigenvalue of P .

There is an elementary relationship between the quantities δ(L), µ(L), grade(P ), and rank(P ), for any
matrix polynomial P (λ) whose list of elementary divisors and minimal indices is L; this fundamental rela-
tionship is known as the Index Sum Theorem.

Theorem 3.4. [11, Thm. 6.5] (Index Sum Theorem). Let P (λ) be an arbitrary matrix polynomial over an
arbitrary field, and let L denote the list of elementary divisors and minimal indices of P . Then :

δ(L) + µ(L) = grade(P ) · rankP. (3.2)
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Now that we have concretely established notions of a list of elementary divisors and minimal indices and
related quantities, we are ready to discuss the main topic of this paper. Recall that by “solving the QRP”
we mean the following:

Given a list L of elementary divisors and minimal indices, determine whether or not there exists a
quadratic matrix polynomial whose elementary divisors and minimal indices are precisely the ones in L.
In the affirmative case, construct such a matrix polynomial.

Note that if Q is a quadratic matrix polynomial whose elementary divisors and minimal indices are that of
L, then we say that “Q is a (quadratic) realization of L” or that “Q realizes L.”

In this paper (up to Section 7) we solve the T -palindromic QRP, which means that the quadratic poly-
nomial Q that realizes L is to be T -palindromic. Moreover, we show how to construct a quasi-canonical
quadratic realization for each realizable list L, consisting of the direct sum of canonical quadratic T -
palindromic blocks, each associated to simple combinations of elementary divisors and minimal indices
elements in the list. The first natural notion that we will need is the following.

Definition 3.5. (p-quad Realizability). A list L of elementary divisors and minimal indices is said to be
p-quad realizable over the field F if there exists some T -palindromic quadratic matrix polynomial over F,
with grade of palindromicity 2, whose elementary divisors and minimal indices are exactly the ones in L.

It is worth briefly explaining our choice of nomenclature in Definition 3.5, and in the subsequent defini-
tions. More specifically, the term “p-quad” was chosen as a mnemonic contraction of the words “palindromic”
and “quadratic.”

Based on the properties of the spectral and singular structures of T -palindromic matrix polynomials
described in Section 2.1, we introduce the following concept.

Definition 3.6. (p-quad Symmetry). A list L of elementary divisors and minimal indices over an alge-
braically closed field F with charF 6= 2 is said to have p-quad symmetry if the following conditions are
satisfied:

(1) (a) For any a 6= 0,±1 and any β ≥ 1, the elementary divisor (λ − a)β appears in L with the same
multiplicity as (λ− 1

a )β (i.e., they appear exactly the same number of times, perhaps zero).
(b) For any β ≥ 1, the elementary divisors λβ and ωβ appear in L with the same multiplicity.
(c) Any odd degree elementary divisor in L associated with eigenvalue a = ±1 has even multiplicity.

(2) The ordered sublists Lleft and Lright of left and right minimal indices are identical.

The notion in Definition 3.7 regarding lists of elementary divisors and minimal indices plays a central
role in this work. As we will see in Theorem 6.1, it comprises the necessary and sufficient conditions for a
list of elementary divisors and minimal indices to be p-quad realizable.

Definition 3.7. (p-quad Admissibility). A list L of elementary divisors and minimal indices is said to be
p-quad admissible if the following conditions are satisfied:

(a) G ≤ 1
2

(
δ + µ

)
,

(b) L has p-quad symmetry.

Remark 3.8. There are several consequences of condition (b) in Definition 3.7 that are worth emphasizing.
If L contains an elementary divisor chain of length g associated with λ0 6= ±1 (including λ0 = 0, ∞), then
L also contains an elementary divisor chain of length g associated with 1/λ0 (where 1/0 =∞ and 1/∞ = 0).
The sum of the degrees of these two chains is at least 2g, so that if the longest elementary divisor chain in
L is associated with some λ0 6= ±1, then δ ≥ 2G, and condition (a) is automatically satisfied as a direct
consequence of (b). This happens, in particular, if L has no elementary divisors associated with ±1. Hence
it is only in the presence of elementary divisor chains associated with λ0 = ±1 that (a) might constitute a
constraint on L independent from (b) in Definition 3.7.

Another consequence of the p-quad symmetry in Definition 3.7(b) is that δ and µ are both even, and
hence
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(c) δ + µ is even.

It has been already observed that conditions (a) and (c) play a key role in the unstructured quadratic realizabil-
ity problem [10, 28], whereas condition (b) is needed here only to accommodate the additional T -palindromic
structure.

Remark 3.9. Necessary and sufficient conditions for a list of elementary divisors and minimal indices to
be realizable by a matrix polynomial of grade d have been presented in [12]. The appropriate variants of
conditions (a) in Definition 3.7 and (c) in Remark 3.8 play a relevant role in this characterization. These
variants are:

(a’) G ≤ 1
d

(δ + µ).

(c’) δ + µ is a multiple of d.

It is important to observe that Definition 3.7 imposes all of the previously known necessary conditions for
a list L to be p-quad realizable. In other words, any p-quad realizable list is p-quad admissible. In particular,
condition (a) in Definition 3.7 is a consequence of Theorem 3.4, while the condition (b) for p-quad symmetry
comes from [32, Cor. 8.1–8.2] for the elementary divisors and [7, Thm. 3.6] for the minimal indices. In terms
of Definitions 3.5 and 3.7, the main result of this paper states that a list L is p-quad realizable if and only
if L is p-quad admissible (c.f., Theorem 6.1).

Given two lists L = {Lfin;L∞;Lleft;Lright} and L̂ =
{
L̂fin; L̂∞; L̂left; L̂right

}
of elementary divisors

and minimal indices, the concatenation of L and L̂, denoted by c(L, L̂), is the list of elementary divisors and
minimal indices

c
(
L , L̂

)
:=
{
{Lfin, L̂fin}; {L∞, L̂∞}; {Lleft, L̂left}; {Lright, L̂right}

}
, (3.3)

obtained by simply adjoining the corresponding lists, retaining all repetitions.
The following result can be obtained by direct verification of the conditions in Definition 3.7.

Lemma 3.10. The concatenation of p-quad admissible lists is also a p-quad admissible list.

Note that the key fact one needs to prove Lemma 3.10 is that the length of the longest chain of elementary
divisors G is subadditive under concatenation of lists, namely

G
(
c(L , L̂)

)
≤ G(L) + G( L̂) .

As a consequence of Lemma 3.10, we can now build new p-quad admissible lists from other p-quad
admissible lists simply by concatenation. A more interesting question is whether we can take a p-quad
admissible list and split it into smaller p-quad admissible lists. To be more precise, a partition of a list of
elementary divisors and minimal indices L = {Lfin;L∞;Lleft;Lright} consists of m lists L1,L2, . . . ,Lm,
with m > 1, satisfying

Lfin =
{

(L1)fin, · · · , (Lm)fin
}
, L∞ =

{
(L1)∞, · · · , (Lm)∞

}
,

Lright =
{

(L1)right, · · · , (Lm)right
}
, Lleft =

{
(L1)left, · · · , (Lm)left

}
,

where some of these lists may be empty. If at least two of these lists L1, . . . ,Lm are non-empty, then the
partition is said to be nontrivial. This leads to the following notion.

Definition 3.11. (p-quad Irreducibility). A list L is p-quad irreducible if it is p-quad admissible, and there
is no nontrivial partition of L into p-quad admissible sublists.

Note that because of Lemma 3.10, when checking whether a list L is p-quad irreducible it suffices to consider
partitions into two nonempty sublists.
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One of the main contributions of this section is isolating the notion of a p-quad irreducible list, and
giving a complete set of all the p-quad irreducible lists in Tables 1 and 2. In the next section we show that
all p-quad admissible lists can be built as a concatenation of copies of the p-quad irreducible lists in Tables
1-2 (c.f., Theorem 3.17).

Type Subtype Elementary Divisors/Minimal Indices Conditions

X X1 (λ− a)m, (λ− 1
a )m m ≥ 1, a 6= 0,±1

X2 λm, ωm m ≥ 1

Y Y1 (λ− 1)2m m ≥ 1

Y ′1 (λ+ 1)2m m ≥ 1

Y2 (λ− 1)2m+3, (λ− 1)2m+3 m ≥ 0

Y ′2 (λ+ 1)2m+3, (λ+ 1)2m+3 m ≥ 0

S S1 ε = 2k , η = 2k k ≥ 0

S2 ε = 2k + 1 , η = 2k + 1 k ≥ 0

Table 1: The irreducible NoDO lists

Remark 3.12. Note that list C̃1 is a particular case of both C1 and C′1 lists (when m = n = 1) and, moreover,
is the only overlap of these two kind of lists. Even though this introduces a redundancy in Table 2, we have
isolated this particular case because it makes the beginning of the proof of Theorem 3.17 much cleaner.

Remark 3.13. It is interesting to observe the relationship between the primed and the unprimed lists in
Tables 1 and 2. Each primed list can, at least symbolically, be obtained from its unprimed counterpart by
simply interchanging the roles of (λ−1) with (λ+1). Note that the only list for which such an interchange does
not affect its elementary divisor structure is C̃1, hence there is no gain in considering its primed counterpart.
Due to this duality between (λ− 1) and (λ+ 1), we will design T -palindromic quadratic matrix polynomials
(blocks) that realize each of the unprimed lists in such a way that when the roles of (λ− 1) and (λ+ 1) are
interchanged, the new blocks become T -palindromic quadratic realizations for the primed counterparts of each
of the lists. To get a simple matching between the blocks that realize the unprimed and the corresponding
primed lists, we will simply replace λ by −λ (additional details are given in Tables 3–6 and Lemma 5.9).

Proposition 3.14. Each list in Table 1 and Table 2 is p-quad irreducible.

Proof. The proof is by direct verification for each list in the Tables, checking first that the given list is p-quad
admissible, and second that any partition of it into two sublists violates at least one of the conditions in
Definition 3.7. To illustrate this type of argument, we include here the proof for type C1 lists from Table 2.

It is clear that C1 is p-quad admissible: condition (b) is obvious, and

G = 2m ≤ 1

2
(2m+ 2n) =

1

2
δ =

1

2
(δ + µ) ,

because m ≤ n. Let L = {λ− 1, . . . , λ− 1, (λ+ 1)n, (λ+ 1)n} be a list of type C1, containing 2m elementary
divisors equal to λ − 1, with 0 < m ≤ n, and n an odd number. If L is partitioned into two sublists L1

11



Type Subtype Elementary Divisors/Minimal Indices Conditions

A A1 λ− 1, . . . , λ− 1︸ ︷︷ ︸
2m

, (λ− a)n , (λ− 1
a

)n n ≥ m > 0, a 6= 0,±1

A ′1 λ+ 1, . . . , λ+ 1︸ ︷︷ ︸
2m

, (λ− a)n , (λ− 1
a

)n n ≥ m > 0, a 6= 0,±1

A2 λ− 1, . . . , λ− 1︸ ︷︷ ︸
2m

, λn , ωn n ≥ m > 0

A ′2 λ+ 1, . . . , λ+ 1︸ ︷︷ ︸
2m

, λn , ωn n ≥ m > 0

B B1 λ− 1, . . . , λ− 1︸ ︷︷ ︸
2m

, (λ+ 1)2n n ≥ m > 0

B ′1 λ+ 1, . . . , λ+ 1︸ ︷︷ ︸
2m

, (λ− 1)2n n ≥ m > 0

B2 λ− 1, . . . , λ− 1︸ ︷︷ ︸
2m

, (λ− 1)2n n > m > 0

B ′2 λ+ 1, . . . , λ+ 1︸ ︷︷ ︸
2m

, (λ+ 1)2n n > m > 0

C C1 λ− 1, . . . , λ− 1︸ ︷︷ ︸
2m

, (λ+ 1)n , (λ+ 1)n n odd, 0 < m ≤ n

C′1 λ+ 1, . . . , λ+ 1︸ ︷︷ ︸
2m

, (λ− 1)n , (λ− 1)n n odd, 0 < m ≤ n

C̃1 λ− 1 , λ− 1 , λ+ 1 , λ+ 1

C2 λ− 1, . . . , λ− 1︸ ︷︷ ︸
2m

, (λ− 1)n , (λ− 1)n n odd, m ≥ 0
2n− 2m ≥ 4

C ′2 λ+ 1, . . . , λ+ 1︸ ︷︷ ︸
2m

, (λ+ 1)n , (λ+ 1)n n odd, m ≥ 0
2n− 2m ≥ 4

M M1 λ− 1, . . . , λ− 1︸ ︷︷ ︸
2m

, ε = 2k , η = 2k 2k ≥ m > 0

M ′
1 λ+ 1, . . . , λ+ 1︸ ︷︷ ︸

2m

, ε = 2k , η = 2k 2k ≥ m > 0

M2 λ− 1, . . . , λ− 1︸ ︷︷ ︸
2m

, ε = 2k + 1 , η = 2k + 1 2k + 1 ≥ m > 0

M ′
2 λ+ 1, . . . , λ+ 1︸ ︷︷ ︸

2m

, ε = 2k + 1 , η = 2k + 1 2k + 1 ≥ m > 0

Table 2: The irreducible “degree-one” lists
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and L2, then one of these sublists must contain the two elementary divisors (λ + 1)n, (λ + 1)n, otherwise
L1 and L2 would both violate the p-quad symmetry requirement of Definition 3.7(b). Now, without loss of
generality, we can assume that the nontrivial partition of L has the form

L1 =
{
λ− 1, . . . , λ− 1︸ ︷︷ ︸

2m−k

, (λ+ 1)n , (λ+ 1)n
}

and L2 =
{
λ− 1, . . . , λ− 1︸ ︷︷ ︸

k

}
,

for some 0 < k ≤ 2m. But then G(L2) = δ(L2) > 0 and µ(L2) = 0, forcing L2 to violate condition (a) in
Definition 3.7. Thus the type C1 list from Table 2 is p-quad irreducible.

From Definition 3.11 we see that the simplest p-quad admissible lists are the p-quad irreducible ones. It
now follows from Proposition 3.14 that many examples of such irreducible lists can be found in Tables 1 and
2. The following definition considers p-quad admissible lists that can be partitioned into p-quad irreducible
lists from these tables.

Definition 3.15. (p-quad Partitionability). A list of elementary divisors and minimal indices is p-quad
partitionable if it can be partitioned into p-quad irreducible sublists of the types appearing in Table 1 and
Table 2. This includes p-quad irreducible lists obtained via trivial partitioning.

A direct consequence of the previous results is that any p-quad partitionable list is p-quad admissible.

Lemma 3.16. Let L be a list of elementary divisors and minimal indices. If L is p-quad partitionable, then
L is p-quad admissible.

Proof. For a p-quad partitionable list L, Definition 3.15 implies that L is a concatenation of lists in Tables 1
and 2. Then by Proposition 3.14 we know that L is a concatenation of p-quad admissible lists, and by
Lemma 3.10 that L as a whole is p-quad admissible.

The converse of Lemma 3.16 is also true, and we include that fact in the Theorem 3.17 characterization
of p-quad partitionability.

Theorem 3.17. (Palindromic Quadratic Partitioning Theorem). Let L be any list of elementary divisors
and minimal indices. Then L is p-quad partitionable if and only if L is p-quad admissible.

To prove the remaining implication (the “if” part) of Theorem 3.17, we will proceed constructively in
Section 4. More precisely, we describe a procedure that always produces a partitioning with the desired
properties, starting from any p-quad admissible list. It is important to note that the partitioning algorithm
does not always provide a unique partitioning of a p-quad admissible list L, but it does guarantee that there
always exists at least one suitable partitioning.

Another important consequence of Theorem 3.17 is that Tables 1 and 2 constitute a complete enumeration
of all p-quad irreducible lists of elementary divisors and minimal indices. In particular there are only finitely
many qualitatively distinct types of p-quad irreducible lists, namely, the ones described in these two tables.

Combining the results of the next two sections will show that any p-quad admissible list is not only
p-quad partitionable, but actually p-quad realizable. Since we have already seen that the converse is true
(see the paragraph right after Remark 3.9), this will give us the main result of this paper (Theorem 6.1), a
simple characterization of p-quad realizability in terms of p-quad admissibility. Our strategy to construct a
T -palindromic realization of any particular p-quad admissible list will be as follows:

• Step 1. Partition the given p-quad admissible list into p-quad irreducible sublists.

• Step 2. Concretely realize each p-quad irreducible sublist by a “canonical” T -palindromic quadratic
block.

• Step 3. Take the direct sum of all of the “canonical” quadratic blocks from Step 2.
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Step 1 is the object of Section 4, whereas Step 2 will be carried out in Section 5. In particular, we display
in that section a T -palindromic quadratic realization (consisting of a single block) for each of the p-quad
irreducible lists of elementary divisors and minimal indices given in Tables 1 and 2. Note that the direct sum
of the blocks in Step 3 gives a structured Kronecker-like quasi-canonical form for T -palindromic quadratic
matrix polynomials, and this direct sum will have the desired finite and infinite elementary divisors and
minimal indices by Lemma 5.1.

Remark 3.18. It is worth emphasizing that the p-quad irreducible lists from Table 1 can be viewed as
“degenerate” cases of the lists in Table 2. More precisely, any list of type A with m = 0, becomes a
corresponding list of type X . Analogously, by setting m = 0, the lists of type Y1 (resp., Y ′1) are degenerate
cases of lists of types B ′1 and B2 (resp., B1 and B ′2), type Y2 (resp., Y ′2) lists are degenerate cases of type C ′1
and C2 (resp., C1 and C ′2) lists, and type S lists are degenerate cases of type M lists. The reason why we
isolate the lists of types X , Y and S in Table 1 has to do with the structure of the proof of Theorem 3.17
given in Section 4.

4. The partitioning algorithm

The goal of this section is to prove the “if” implication in Theorem 3.17, i.e., that every p-quad admissible
list of elementary divisors and minimal indices is p-quad partitionable. To do this we present a “partitioning
algorithm” that produces a partition of any given p-quad admissible list into p-quad irreducible lists from
Tables 1 and 2.

We start by establishing some preliminary special partitioning results. In the following, a list of just
minimal indices (that is, a list with no elementary divisors) is termed a NoED list.

Lemma 4.1. (The NoED Lemma). Any NoED list with p-quad symmetry is p-quad partitionable and p-quad
admissible.

Proof. If L is a list of minimal indices with p-quad symmetry, then it must be of the form L = {εi, ηi}ki=1,
where εi = ηi for all i and k ≥ 1. Then each pair of minimal indices {εi, ηi} is a p-quad irreducible sublist
of type S1 or S2 in Table 1. Hence, L is p-quad partitionable by Definition 3.15 and p-quad admissible by
Lemma 3.16.

Definition 4.2. (NoDO list). A list of elementary divisors and minimal indices with no degree-one ele-
mentary divisors for the eigenvalues λ0 = ±1 is called a NoDO list.

Lemma 4.3. (The NoDO Lemma). Any NoDO list L with p-quad symmetry is p-quad partitionable.

Proof. Begin the partitioning of L by splitting it into the two sublists E and T , where E contains all of the
elementary divisors and T contains all of the minimal indices. Clearly each of the lists E and T inherit from
L the property of having p-quad symmetry. Indeed, in this scenario we claim that E and T are separately
p-quad partitionable. That this is so for T follows immediately from the NoED Lemma 4.1. All that remains
is to see that E is p-quad partitionable.

Since E is a NoDO list with p-quad symmetry, we may do an initial partitioning of the elementary
divisors in E into the following three groups:

(i) all (λ− a)β with β ≥ 1 and a 6= 0,±1,

(ii) all λα and ωβ with α, β ≥ 1, (4.1)

(iii) all (λ± 1)β with β ≥ 2.

By the p-quad symmetry condition (1a) in Definition 3.6, all of the elementary divisors in group (i) can be
paired up to form lists of type X1 in Table 1, while condition (1b) implies that all of the elementary divisors
in group (ii) can be paired up to form lists of type X2. Finally, elementary divisors in group (iii) of even
degree individually form lists of type Y1 or Y ′1, while p-quad symmetry condition (1c) guarantees that the
odd degree elementary divisors in group (iii) will always exactly pair up to form lists of type Y2 and Y ′2.
This completes the p-quad partitioning of the list E , and hence also of L.
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Finally, the last technical result we need as a tool for implementing our partitioning algorithm to prove
Theorem 3.17 is the following lemma.

Lemma 4.4. (The Single Eigenvalue Lemma). Let L be an elementary divisor chain for either the eigenvalue
λ0 = 1 or λ0 = −1. Then L is p-quad partitionable if and only if L is p-quad admissible.

Proof. Without loss of generality, we may assume λ0 = 1. The proof for λ0 = −1 follows exactly the same
argument using lists of types B ′2 and C ′2 instead of B2 and C2, respectively.

If L is a p-quad partitionable list, then Lemma 3.16 implies that L is p-quad admissible.
To prove the converse, assume that L is a p-quad admissible list, and let k be the number of degree-one

elementary divisors in L. The proof proceeds by induction on k. Note that the p-quad symmetry of L (see
Definition 3.6), implies that k is even, so the induction is over even numbers only.

Base case: If k = 0 the list has no degree-one elementary divisors, so the desired conclusion follows from
the NoDO Lemma 4.3.

Inductive hypothesis: Assume that any p-quad admissible list having at most an even number k ≤ N
of degree-one elementary divisors is p-quad partitionable, where N is a positive even integer.

Now let L by an arbitrary p-quad admissible list with k = N + 2. The fact that L is p-quad admissible
implies that G(L) ≤ 1

2δ(L) (see Definition 3.7), and consequently that there must be at least one elementary
divisor (λ− 1)α in L with α ≥ 3. To see this, we write the list L as

L =


k︷ ︸︸ ︷

(λ− 1), . . . , (λ− 1), (λ− 1)α1 , . . . , (λ− 1)αp

 ,

with αi ≥ 2. We know by the p-quad admissibility of L that

G(L) = k + p ≤ 1

2
(k + α1 + · · ·+ αp) = δ(L) ,

which is equivalent to
k ≤ (α1 − 2) + · · ·+ (αp − 2).

Since k > 0, it must be αi − 2 > 0, for at least one 1 ≤ i ≤ p.
Then we have the following four subcases, that we analyze separately:

(s1) α is even and k ≥ α− 2. In this case, the type B2 sublist

α−2︷ ︸︸ ︷
λ− 1, . . . , λ− 1, (λ− 1)α can be partitioned

away from L. The remaining sublist L′ has G(L′) = G(L)− (α− 1) and δ(L′) = δ(L)− (α− 2)− α =
δ(L) − (2α − 2). The assumption that L is a p-quad admissible list implies that G(L) ≤ 1

2δ(L), and
consequently, that

G(L′) = G(L)− (α− 1) ≤ 1

2
δ(L)− (α− 1) =

1

2

(
δ(L)− 2(α− 1)

)
=

1

2
δ(L′) . (4.2)

Relation (4.2) together with the fact that L′ has p-quad symmetry inherited from L, imply that L′ is
a p-quad admissible list with at most N degree-one elementary divisors. Partitioning of L′ can now
be completed by the induction hypothesis.

(s2) α is even and k < α − 2. In this case, partition off the type B2 sublist with (λ − 1)α and all of the

available λ− 1 elementary divisors

k︷ ︸︸ ︷
λ− 1, . . . , λ− 1, (λ− 1)α. The remaining sublist L′ is a NoDO list

with p-quad symmetry, and its partitioning can then be completed using the NoDO Lemma 4.3.

(s3) α is odd and k ≥ 2α−4. Note that 2α−4 ≥ 2. By p-quad symmetry of the list L, there must be a second

copy of (λ−1)α in L. Then we can partition off the type C2 sublist

2α−4︷ ︸︸ ︷
λ− 1, . . . , λ− 1, (λ−1)α, (λ−1)α.
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The remaining sublist L′ inherits p-quad symmetry from L and has

G(L′) = G(L)− (2α− 4)− 2 = G(L)− (2α− 2) ,
δ(L′) = δ(L)− (2α− 4)− 2α = δ(L)− (4α− 4) .

(4.3)

Finally, (4.3) together with G(L) ≤ 1
2δ(L) imply that G(L′) ≤ 1

2δ(L
′), and therefore L′ is a p-quad

admissible list with at most N degree-one elementary divisors. Applying the induction hypothesis
finishes off the partitioning of L′.

(s4) α is odd and k < 2α − 4. In this final case, we partition off the following sublist of type C2
k︷ ︸︸ ︷

λ− 1, . . . , λ− 1, (λ − 1)α, (λ − 1)α. The remaining sublist L′ has p-quad symmetry and no degree-
one elementary divisors. Hence L′ is p-quad partitionable by the NoDO Lemma 4.3.

With all the necessary auxiliary results established, we proceed with the proof of Theorem 3.17.

Proof. (of the Palindromic Quadratic Partitioning Theorem 3.17)
(⇒) This implication is Lemma 3.16.
(⇐) We will show algorithmically how a p-quad admissible list L of elementary divisors and minimal indices
can be p-quad partitioned. First note that if L contains any zero minimal indices, then they can be
partitioned off right away into lists of type S1, leaving a remaining sublist that is clearly still p-quad
admissible. Thus, without loss of generality we will from now on assume that L contains no zero minimal
indices.

We proceed by defining some key quantities. Let r and s be the number of degree-one elementary divisors
(λ−1) and (λ+1), respectively; recall that p-quad symmetry implies that both r and s are even. As a warm-
up, let us consider the case where r = s. If r = s = 0, then p-quad partitionability of L follows immediately
from the NoDO Lemma. On the other hand, if r = s is nonzero, then the list L can be partitioned first into
r/2 sublists of type C̃1, and a remaining sublist L′ that has p-quad symmetry and is NoDO. Therefore, the
NoDO Lemma implies that L′ is p-quad partitionable.

Now we consider the case where r 6= s, starting with r−s = ` > 0, i.e., there are more degree-one (λ−1)
than (λ+ 1) elementary divisors. The partitioning of L begins by combining all s of the (λ+ 1) elementary
divisors with s of the (λ − 1) elementary divisors into s/2 sublists of type C̃1, leaving a remaining sublist
L′ that is p-quad symmetric, has no degree-one (λ+ 1) elementary divisors at all, and exactly ` degree-one
(λ− 1) elementary divisors.

Next we try to take as many as possible of the remaining ` degree-one (λ − 1) elementary divisors and
combine them together with elementary divisors in L′ that are not associated with the eigenvalue λ0 = 1,
and also together with (nonzero) minimal indices in L′, forming lists of type

A1 , A2 , B1 , C1 ,M1 , or M2 . (4.4)

How many degree-one (λ − 1) elementary divisors can be “absorbed” into such lists? Observe that each
of these list types has a certain “capacity” to absorb (λ − 1) elementary divisors. For example, an A1 list
can contain a maximum of 2n copies of (λ − 1), where 2n is exactly the total degree of the elementary
divisors (λ− a)n and

(
λ− 1

a

)n in the A1 list that are not associated with the eigenvalue λ0 = 1. Analogous
statements can be made about each of the list types A2,B1, and C1. Similarly, an M1 or M2 list has a
maximum “capacity” to absorb (λ − 1) elementary divisors that is exactly the sum of the minimal indices
in the list. Thus we see that the “total capacity” to absorb (λ− 1) elementary divisors into the six types of
list in (4.4) is δ̃(L′) + µ(L′) , where δ̃(L′) is the sum of the degrees of all elementary divisors in L′ that are
not associated with the eigenvalue λ0 = 1. We then have two subcases to consider:

(a) ` ≤ δ̃(L′) + µ(L′) ,

(b) ` > δ̃(L′) + µ(L′) .
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In case (a), all of the ` degree-one elementary divisors (λ − 1) in L′ can be partitioned off into lists as in
(4.4), leaving a remaining sublist L′′ that has p-quad symmetry and is NoDO; the p-quad partitioning of
L′′ is then completed by the NoDO Lemma 4.3.

On the other hand, if we are in case (b), then after δ̃(L′) + µ(L′) of the degree-one elementary divisors
(λ−1) are partitioned away (uniquely) into the list types (4.4), we are left with a remaining p-quad symmetric
sublist L′′′ having only elementary divisors associated with the eigenvalue λ0 = 1. In other words, L′′′ is a
p-quad symmetric elementary divisor chain for λ0 = 1 and µ(L′′′) = 0. All that remains is to show that L′′′
is p-quad admissible, in particular that L′′′ satisfies condition (a) of Definition 3.7; we would then be done
by the Single Eigenvalue Lemma 4.4.

To see why Definition 3.7(a) holds for L′′′ , observe that if T denotes a sublist of type C̃1 or any of the
types in (4.4) that has been partitioned off from L so far, then:

(i) At least half of the elementary divisors in T are degree-one (λ− 1) elementary divisors.

(ii) If t = δ(T ) + µ(T ), then T contains exactly t/2 degree-one elementary divisors (λ− 1).

Now (i) implies that the longest elementary divisor chain in the original list L must have been the one
associated with eigenvalue λ0 = 1. Letting d denote the number of degree-one elementary divisors (λ − 1)
that have been removed from L in order to get to L′′′, then G(L′′′) = G(L)−d and δ(L′′′) = δ(L′′′)+µ(L′′′) =
δ(L) + µ(L)− 2d. But from the p-quad admissibility of L we know that δ(L) + µ(L) ≥ 2G(L), so

δ(L) + µ(L)− 2d ≥ 2G(L)− 2d ,

which implies
δ(L′′′) + µ(L′′′) ≥ 2(G(L)− d) = 2G(L′′′) ,

showing that L′′′ is p-quad admissible as desired. This completes the proof of Theorem 3.17 in case r−s > 0,
that is, the case when there are more (λ− 1) than (λ+ 1) elementary divisors.

The case s− r > 0, with more (λ+ 1) than (λ− 1) elementary divisors, is handled similarly; instead of
using the lists from (4.4) we use their primed counterparts, i.e.,

A ′1 , A ′2 , B ′1 , C ′1 ,M ′
1 , or M ′

2 , (4.5)

in order to “absorb” as many as possible of the extra (λ+ 1) elementary divisors. The proof now continues
to the end, mutatis mutandis, in a fashion completely analogous to the case r − s > 0.

Remark 4.5. Note that having strict inequality in condition (a) of the proof of Theorem 3.17 is one place
where non-uniqueness of the partitioning algorithm can occur. Observe that the statement ` < δ̃(L′) +µ(L′)
says that the number of elementary divisors (λ−1) in L′ is less than the sum of the total degree of elementary
divisors associated with the eigenvalues different from 1 and all minimal indices of L′. This strict inequality
sometimes gives us several options on how to use lists from (4.4) when partitioning L′, as long as L′ contains
more than one element different from λ− 1 from any of the lists in (4.4). For example, assume L′ is of the
form

L′ :=
{
λ− 1 , λ− 1 , λ− 1 , λ− 1 , (λ+ 1)2 , (λ+ 1)2 , ε = 1 , η = 1

}
.

Now recall that δ̃(L′) denotes the sum of the degrees of all elementary divisors in L′ that are not associated
with the eigenvalue λ0 = 1, so that δ̃(L′) + µ(L′) = 6 and ` = 4. Then two distinct partitions of L′ into
p-quad irreducible lists are{

λ− 1 , λ− 1 , ε = 1 , η = 1
}
,
{
λ− 1 , λ− 1 , (λ+ 1)2

}
,
{

(λ+ 1)2
}

(4.6)

and {
ε = 1 , η = 1

}
,
{
λ− 1 , λ− 1 , (λ+ 1)2

}
,
{
λ− 1 , λ− 1 , (λ+ 1)2

}
. (4.7)
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Note that the sublists in (4.6) are of types M2, B1, and Y ′1, while the sublists in (4.7) are of types S2, B1,
and B1, respectively.

However, there are cases where we have strict inequality ` < δ̃(L′) + µ(L′) but no choices on how to
partition L′. For example, if

L′ :=
{
λ− 1 , λ− 1 , ε = 2 , η = 2

}
(for which δ̃(L′) + µ(L′) = 4 and ` = 2), then there is only one partition of L′ into lists from (4.4), namely
L′ itself.

5. T -palindromic quadratic realizations for p-quad irreducible lists

In Sections 3 and 4 we have first introduced and studied the simplest of all p-quad admissible lists of
elementary divisors and minimal indices, i.e., p-quad irreducible lists. Then, we have shown that every
p-quad admissible list can be partitioned into finitely many p-quad irreducible sublists. We now proceed
by concretely constructing T -palindromic quadratic matrix polynomials that realize each of the p-quad
irreducible lists from Tables 1-2.

5.1. Tools for designing and analyzing blocks
In this section we introduce some notation and establish several fundamental results that will be used

throughout the rest of this paper. With Ĩk and Ñk we denote the k × k constant matrices given by

Ĩk :=

[
1

. .
.

1

]
k×k

and Ñk :=


0

0 1
. .
.
. .
.

0 1


k×k

. (5.1)

Lemma 5.1. (Spectral and singular structures of a direct sum). Let P (λ) and Q(λ) be two matrix poly-
nomials over an algebraically closed field F, each of grade k. Further let L(P ) and L(Q) be the lists of
elementary divisors and minimal indices of P and Q, respectively. Then the list of elementary divisors and
minimal indices of the grade k matrix polynomial diag(P , Q) is the concatenation of the lists L(P ) and
L(Q), i.e., c(L(P ),L(Q)) as in (3.3).

Proof. We need to prove two things:

(a) The list of elementary divisors of diag(P,Q) is the concatenation of the lists of elementary divisors of
P and Q,

(b) The list of minimal indices of diag(P,Q) is the concatenation of the lists of minimal indices of P and Q.

The proof of claim (a) can be found in [20, Prop. S1.5] when F = C and for the case of finite elementary
divisors. For the infinite ones, just apply the result for the elementary divisors associated with zero in
revk(diag(P,Q)) = diag(revkP, revkQ). Note however that the same proof can be easily adapted so that it
holds for arbitrary fields, simply by replacing the elementary divisors of the form (λ − λ0)α by the powers
of F-irreducible scalar polynomials. The proof of claim (b) can be found in [27].

The next two lemmas are workhorses of this entire section. They allow us to easily determine the ele-
mentary divisors of special anti-triangular matrix polynomials. Before proceeding we remind the reader that
the notation P (λ) ∼ Q(λ) means that the matrix polynomials P (λ) and Q(λ) are unimodularly equivalent,
and that such P (λ) and Q(λ) have identical finite elementary divisors.

In the following, we use the notation Rowi and Colj to denote the ith row and jth column of a general
matrix. The notation A→ B corresponds to the elementary row (resp., column) operation that replaces the
row (resp., column) A by the row (resp., column) B, and A↔ B denotes row (resp., column) transposition
between A and B. For the sake of uniqueness, the gcd of two scalar polynomials is considered to be monic.
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Lemma 5.2. (Master Lemma). Let f, g, h be scalar polynomials over an arbitrary field, and let r := gcd(f, h).
Then:

(a)
[

0 g
f h

]
∼
[
t s
r 0

]
using only elementary unimodular column operations; here both s and t

are polynomial multiples of g, and the relation rs = fg holds.

(b) Let r, s, t be scalar polynomials such that r divides t. Then
[
t s
r 0

]
∼
[

0 s
r 0

]
using exactly one

elementary row operation of the form Row1 → Row1 + k · Row2, with k being a scalar polynomial.

(c) Let r, s, t be scalar polynomials such that gcd(r, s) = 1. Then
[
t s
r 0

]
∼
[

0 s
r 0

]
using exactly one

column elementary operation of the form Col1 → Col1 + β ·Col2 and one row elementary operation of
the form Row1 → Row1 + k · Row2, with β and k being scalar polynomials.

Proof. (a) We do this unimodular reduction using the data from the computation of r = gcd(f, h) via the
Euclidean algorithm, i.e., the method of successive division. Let us first assume that deg(f) ≥ deg(h).
Then:

(1) Divide h into f : f = hq1 + r1, deg r1 < deg h, gcd(f, h) = gcd(h, r1).
(2) Divide r1 into h: h = r1q2 + r2, deg r2 < deg r1, gcd(h, r1) = gcd(r1, r2).
(3) Divide r2 into r1: r1 = r2q3 + r3, deg r3 < deg r2, gcd(r1, r2) = gcd(r2, r3).
...

...
...

(n+ 1) Divide rn into rn−1: rn−1 = rnqn+1 + 0⇒ gcd(rn−1, rn) = rn = gcd(f, h) = r.

Then, by means of elementary unimodular column operations, we obtain[
0 g
f h

]
∼
[
−q1g g
r1 h

]
∼
[
−q1g (1 + q1q2) g
r1 r2

]
∼ · · · ∼

[
∗ ∗
rn 0

]
or
[
∗ ∗
0 rn

]
,

where ∗ denotes multiples of g. More precisely, at the ith step we perform the column operation
Col1 → Col1 − qi · Col2, if i is odd, and Col2 → Col2 − qi · Col1 if i is even. Also note that, if
the resulting matrix is of the form [ ∗ ∗0 rn ], then one can perform one elementary column operation to
obtain [ ∗ ∗rn 0 ] = [ ∗ ∗0 rn ]

[
0 −1
1 0

]
. The identity rs = fg follows from the fact that none of the elementary

unimodular column operations affect the determinant of the starting matrix.

If deg(h) > deg(f), then we exchange the roles of f and h, i.e., we divide f into h: h = fq1 + r1,
with deg(r1) < deg(f), then r1 into f : f = r1q2 + r2, with deg r2 < deg r1, and so on. We then apply
to the matrix

[
0 g
f h

]
the following elementary column operations instead: at the ith step, we perform

Col2 → Col2 − qi · Col1, if i is odd, and Col1 → Col1 − qi · Col2, if i is even.

(b) Since r divides t, there exists a polynomial p such that t = pr. Consequently, the elementary row
operation Row1 → Row1 − p · Row2 gives[

t s
r 0

]
∼
[

0 s
r 0

]
.

(c) If gcd(r, s) = 1, then there exist scalar polynomials a(λ), b(λ) such that ar + bs = 1. Moreover, we
have tar + tbs = t. Performing a single row and a single column elementary unimodular operation
(Row1 → Row1−(at)·Row2 and Col1 → Col1−(bt)·Col2, respectively) gives us the desired equivalence:[

t s
r 0

]
∼
[
t− tar s
r 0

]
∼
[
t− tar − tbs s

r 0

]
=

[
0 s
r 0

]
.
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Remark 5.3. It is also possible to state and prove a modified version of Lemma 5.2(a), where r := gcd(g, h),
and the roles of r and s are exchanged. In that case, the roles of elementary column and row operations are
exchanged as well. Similarly for Lemma 5.2(b) and Lemma 5.2(c).

Lemma 5.4. (Bi-antidiagonal Collapsing Lemma). Let B(λ) be an n×n matrix polynomial over an arbitrary
field of the form

B(λ) =


an(λ)

an−1(λ) bn−1(λ)

. .
.

. .
.

a2(λ) b2(λ)
a1(λ) b1(λ)

 .
Let r(λ) := gcd(a1, b1) and assume the following:

(a) gcd
(a1a2 · · · aj

rj−1
, bj

)
= r, for j = 1, . . . , n− 1, and

(b) r divides a1, a2, . . . , an.

Then B(λ) is unimodularly equivalent to
p(λ)

r(λ)

. .
.

r(λ)

 = Ĩn · diag
(
r(λ) , . . . , r(λ) , p(λ)

)
, (5.2)

where
p(λ) := r(λ) ·

(
a1(λ)a2(λ) · · · an(λ)

rn(λ)

)
=

a1(λ)a2(λ) · · · an(λ)

rn−1(λ)
.

Moreover, one can obtain (5.2) in such a way that the only elementary row operation involving the first row
is of the form Row1 → Row1 + h(λ) · Row2, for some polynomial h(λ).

Proof. Apply Master Lemma 5.2(a) on the first two columns of B(λ) to get

B(λ) ∼



an(λ)
an−1(λ) bn−1(λ)

. .
.

. .
.

a3(λ) b3(λ)
t2(λ) s2(λ) b2(λ)
r(λ)


with s2, t2 being multiples of a2 and s2 = (a1a2)/r. Now, using Lemma 5.2(b), this matrix is unimodularly
equivalent to 

an(λ)
an−1(λ) bn−1(λ)

. .
.

. .
.

a3(λ) b3(λ)
0 s2(λ) b2(λ)

r(λ)


.
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By Lemma 5.2(a) again, now applied to columns 2 and 3, this is unimodularly equivalent to

an(λ)
an−1(λ) bn−1(λ)

. .
.

. .
.

a4(λ) b4(λ)
t3(λ) s3(λ) b3(λ)
r(λ) 0

r(λ)


,

with s3, t3 being multiples of a3, and s3 = (s2a3)/r = (a1a2a3)/r2. And again by Lemma 5.2(b), this is
unimodularly equivalent to

an(λ)
an−1(λ) bn−1(λ)

. .
.

. .
.

a4(λ) b4(λ)
0 s3(λ) b3(λ)

r(λ) 0
r(λ)


.

Proceeding recursively in this way by appropriately operating on columns up to the last-but-one, and rows
up to the second one (that is, we do not touch the first row and the last column), we arrive to

an(λ)
sn−1(λ) bn−1(λ)

r(λ)

. .
.

r(λ)

 ,

with s = (a1a2 · · · an−1)/rn−2. Now, Lemma 5.2(a) applied to the last two columns gives the unimodularly
equivalent matrix polynomial 

tn(λ)
a1(λ) · · · an(λ)

rn−1(λ)
r(λ) 0

r(λ)

. .
.

r(λ)


,

with tn being a multiple of an, which in turn a multiple of r. Finally, Lemma 5.2(b) allows us to get the
unimodularly equivalent matrix polynomial

a1(λ) · · · an(λ)

rn−1(λ)
r(λ)

. .
.

r(λ)

 ,

as wanted.
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Remark 5.5. Using Remark 5.3, we can also obtain a “downwards version” of Lemma 5.4, where r(λ) :=
gcd(an, bn−1) and condition (a) is replaced by

gcd
(anan−1 · · · an−j+1

rj−1
, bn−j

)
= r(λ) ,

for j = 1, . . . , n−1. Further, the matrix from (5.2) is replaced by diag(r(λ), . . . , r(λ), p(λ)) · Ĩn. Accordingly,
in this case the only elementary column operation that involves the first column of B(λ) is of the form
Col1 → Col1 + h(λ) · Col2, for some polynomial h(λ).

We have stated Lemma 5.4 in a general setting for bi-antidiagonal matrix polynomials. However, we will
only use it in Section 5.4 to collapse blocks of a particular kind, denoted by Qk(p(λ), q(λ), r(λ)), and which
are defined in (5.3).

5.2. Building blocks
Before we start building T -palindromic quadratic realizations for each of the p-quad irreducible lists of

elementary divisors and/or minimal indices from Tables 1 and 2, we first establish some notation. Based on
everything done so far, it is evident that the scalar polynomials λ+ 1 and λ− 1 (as well as their reversals)
play an important role in the p-quad realizability problem. Hence, for the sake of brevity, we will sometimes
use the notation:

ϕ(λ) := λ+ 1 , θ(λ) := λ− 1.

Note that rev1ϕ = ϕ, rev1θ = −θ, rev2ϕ = λϕ, and rev2θ = −λθ. Other pieces of notation concern matrices.
Two types of matrices will frequently occur; we refer to them as “quadratic” blocks and “splitter” blocks.

The quadratic k × k block, Qk, is defined as follows:

Qk : P1 × P1 × P2 → F[λ]k×k

(p(λ), q(λ), r(λ)) 7→ (p · q)(λ) · Ĩk + r(λ) · Ñk ,
(5.3)

where Pj := {x(λ) ∈ F[λ] : deg x(λ) ≤ j} , for some nonnegative integer j. From (5.3) it is obvious that
each entry of Qk is a scalar polynomial of degree at most two, hence the term quadratic block is suitable.
Here are some concrete examples of quadratic blocks:

Qk(λ− a, λ− a, λ) = (λ− a)2Ĩk + λÑk =


(λ− a)2

(λ− a)2 λ

. .
.

. .
.

(λ− a)2 λ


k×k

,

Qk(1, 1, λ2) = 1 · Ĩk + λ2Ñk =


1

1 λ2

. .
.

. .
.

1 λ2


k×k

.

The following lemma collects some useful and easily provable properties of Qk.

Lemma 5.6. Let Qk be defined as in (5.3). The following statements are true:

(a) Qk(p, q, r) = Qk(p, q, r)T .

(b) Qk(p, q, r) = Qk(q, p, r), i.e., Qk is symmetric in its first two arguments.

(c) rev2Qk
(
p, q, r

)
= Qk

(
rev1p, rev1q, rev2r

)
.

Proof. We only prove (c), since (a) and (b) are immediate. Set p(λ) = p0 + λp1 and q(λ) = q0 + λq1, so
that, (pq)(λ) = p0q0 + λ(p1q0 + p0q1) + λ2p1q1. Then

rev2(pq) = p1q1 + λ(p1q0 + p0q1) + λ2p0q0 = (p1 + λp0)(q1 + λq0) = (rev1p)(rev1q) ,
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and the desired result easily follows.

The other blocks that are of interest, the so called called splitter blocks H,K, and L, are defined as:

K(λ) :=

 (λ− 1)2

(λ− 1)2 λ(1− λ)
(λ− 1)2 (λ− 1) −λ

 =

 θ 2

θ2 −λθ
θ2 θ −λ

 ,

H(λ) :=

 1− λ2
(λ+ 1)2 λ(1 + λ)

λ2 − 1 (λ+ 1) λ

 =

 −ϕθ
ϕ2 λϕ

ϕθ ϕ λ

 , L(λ) :=

[
λ λ2

1 λ

]
. (5.4)

Clearly, all splitter blocks are quadratic and T -palindromic with grade 2. The role of these blocks is not
immediately obvious, and neither is the reason for giving them such a name. Answers to these questions
will become clear throughout this entire section, but an initial insight can be obtained by looking into the
Smith forms of each of these blocks. For example, the Smith form of K is diag

(
1, (λ− 1)3, (λ− 1)3

)
, which

follows from Theorem 2.2(d) and the fact that the gcd of all 1 × 1 minors of K is 1, the gcd of all 2 × 2
minors is (λ− 1)3, and detK = −(λ− 1)6. One could speculate that the (2, 2) entry of K is somehow being
“split” between the two corner entries on the anti-diagonal of K to give its Smith form. To see that this is
exactly what is happening, consider the 3× 3 matrix polynomial

F (λ) :=

 (λ− 1)2m

(λ− 1)2 λ(1− λ)
(λ− 1)2k (λ− 1) −λ

 , (5.5)

obtained by a slight modification of the anti-diagonal entries of K. Assuming that 1 ≤ k ≤ m, again it is
easy to see that the Smith form of F is diag

(
1, (λ− 1)2k+1, (λ− 1)2m+1

)
(the gcd of all 1× 1 minors of F

is 1, the gcd of all 2 × 2 minors is (λ − 1)2k+1 and detF = −(λ − 1)2m+2k+2), i.e., the middle entry of F
is “split” between the other two anti-diagonal entries (λ− 1)2k and (λ− 1)2m. A similar conclusion follows
from examining the Smith form of H, which is diag(1, (λ−1)(λ+1)2, (λ−1)(λ+1)2), as can be seen, again,
by looking at the gcd of the 1× 1, 2× 2, and 3× 3 minors. Finally, note that the block L is singular, with
rank one and no finite or infinite elementary divisors, and with ε = η = 1.

5.3. “Canonical” palindromic blocks
In Tables 3–6 we define several types of matrix polynomials, and in Section 5.4 we show that each of

them is a T -palindromic quadratic realization for a corresponding type of the p-quad irreducible list from
Tables 1 and 2. Indeed, the notation for different types of polynomials given in Tables 3–6 is chosen so the
types of polynomials X, Y , S, A, B, C, and M , are T -palindromic quadratic realizations for the types of
p-quad irreducible lists X , Y, S, A, B, C, andM, respectively, from Tables 1 and 2.

Now recall that any p-quad admissible list of elementary divisors and minimal indices can be partitioned
into p-quad irreducible sublists, i.e., the ones in Tables 1 and 2 (c.f. Theorem 3.17). Assuming that the
matrix polynomials from Tables 3–6 are in fact T -palindromic quadratic realizations for corresponding p-
quad irreducible lists, it is reasonable, taking into account Lemma 5.1, to use these polynomials as building
blocks for a T -palindromic quadratic realization of an arbitrary p-quad admissible list. Since this turns out
to be the case, we choose to refer to the polynomials in Tables 3–6 simply as blocks. Furthermore, the low
anti-bandwidth of these blocks makes them resemble the blocks arising in the Kronecker canonical form of
matrix pencils.

In Tables 3-6, the entries ∗, •, � and � appearing in the corners between adjacent anti-diagonal blocks
are always assumed to be located in the upper left corner. More precisely, if the first column of the upper
block is the jth column of the whole matrix and the first row of the lower block is the ith row of the whole
matrix, then the entries ∗, •, �,� are in the (i, j) position.
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Type Subtype Block Conditions

(θ = λ− 1)

X X1 Qm

(
λ− a, λ− 1

a
, θ2) a 6= 0,±1

X2 Qm(1, λ, θ2)

Y Y1 Qm

(
θ, θ, λ

)
m ≥ 1

Y′1 Replace λ by −λ in the block Y1

Y2


Qm(θ, θ, λ)

K ∗

Qm(θ, θ, λ)
∗


(2m+3)×(2m+3)

∗ = λ
m ≥ 0
K as in (5.4)

Y′2 Replace λ by −λ in the block Y2

S S1


Qk(λ, λ, 1)

0 ∗

Qk(1, 1, λ2)
•


(2k+1)×(2k+1)

∗ = 1
• = λ2

k ≥ 0

S2


Qk(λ, λ, 1)

L ∗

Qk(1, 1, λ2)
•


(2k+2)×(2k+2)

∗ = 1
• = λ2

k ≥ 0
L as in (5.4)

Table 3: Blocks of type X,Y and S

Note that the blocks in Tables 5 and 6 have been divided in two cases, denoted with an additional
subindex “a” or “b”. The reason for this is the need to consider separately the realization of lists of types C
andM in Table 2 for the different cases: n−m even (subindex a) or n−m odd (subindex b) for the type
C lists, and m even (subindex a) and m odd (subindex b) for typeM lists.

Remark 5.7. (Limit cases). There are several “limit cases” for some of the block types in Tables 3–6 where
the definition can be ambiguous due to some of the inner blocks having null size. All these limit cases are
defined after removing the blocks of size 0 and “collapsing” or removing the glueing entries. The following
cases make this idea more concrete.

• The cases m = 0 for block Y2 and k = 0 in both S1 and S2 blocks in Table 3. In all these cases, only
the central block remains, and the glueing entries do not appear. More precisely, Y2 = K,S1 = 0, and
S2 = L.
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Type Subtype Block Conditions

(θ = λ− 1)

A A1


Qm(−θ, p̂, θ 2)

Qn−m(p, q, θ2)
∗

Qm(θ, p, θ2)
∗



∗ = θ2

q = λ− 1
a

p = λ− a
a 6= 0,±1
p̂ = 1− aλ

= rev1(λ− a)
0 < m ≤ n

A′1 Replace λ by −λ and a by −a in the block A1

A2


Qm(λ,−θ, θ 2)

Qn−m(1, λ, θ2)
∗

Qm(1, θ, θ2)
∗


∗ = θ2

0 < m ≤ n

A′2 Replace λ by −λ in the block A2

B B1 Set a = −1 in the block A1 0 < m ≤ n

B′1 Set a = 1 in the block A′1 0 < m ≤ n

B2


Qm(θ, θ,−λθ)

Qn−m(θ, θ, λ)
∗

Qm(θ, θ, θ)
•


• = θ
∗ = rev2θ

= λ− λ2

= −λθ
0 < m < n

B′2 Replace λ by −λ in the block B2

Table 4: Blocks of types A and B

• The case m = n for block A1 in Table 4. Here block A1 is defined as follows

A1 =


Qm(−θ, p̂, θ 2)

Qm(θ, p, θ2)
∗

 , with ∗ = (λ− 1)2. (5.6)

• The case m = n for block A2 in Table 4. Here block A2 is defined as follows

A2 =


Qm(λ,−θ, θ 2)

Qm(1, θ, θ2)
∗

 , with ∗ = (λ− 1)2. (5.7)

• The case m = n for block B1 in Table 4. In this case, block B1 is defined analogously to A1.
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Subtype Block Conditions

(ϕ = λ+ 1 , θ = λ− 1)

C1a



Qm(ϕ,−θ, θ 2)

Q`(ϕ,ϕ, θ
2)

∗

Q`(ϕ,ϕ, θ
2)

Qm(ϕ, θ, θ2)
∗


n−m = 2`

m > 0
n is odd
∗ = θ2

C1b



Qm−1(ϕ,−θ, θ 2)

Q`(ϕ,ϕ, θ
2)

∗

H ∗

Q`(ϕ,ϕ, θ
2)

∗

Qm−1(ϕ, θ, θ2)
∗



n−m = 2`+ 1
m > 0
n is odd
∗ = θ2

H as in (5.4)

C′1a Replace λ by −λ in the block C1a

C′1b Replace λ by −λ in the block C1b

C̃1

[
0 −ϕθ
ϕθ 0

]

C2a



Qm(θ, θ,−λθ)

Q`(θ, θ, λ)
∗

Q`(θ, θ, λ)

Qm(θ, θ, θ)
•


n−m = 2` > 0

• = θ
∗ = rev2θ

= −λθ

C2b



Qm(θ, θ,−λθ)

Q`−1(θ, θ, λ)
∗

K �

Q`−1(θ, θ, λ)
�

Qm(θ, θ, θ)
•



n−m = 2`+ 1
` ≥ 1
� = λ
• = θ
∗ = rev2θ

= −λθ
K as in (5.4)

C′2a Replace λ by −λ in the block C2a

C′2b Replace λ by −λ in the block C2b

Table 5: Blocks of type C

• The case ` = 0 (i.e., m = n) in block C1a in Table 5. Here C1a block is defined as

C1a =


Qm(ϕ,−θ, θ 2)

Qm(ϕ, θ, θ2)

 . (5.8)

Note that, in this case, the glueing entries ∗ are missing.
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Subtype Block Conditions

(θ = λ− 1)

M1a



Qm(λ,−θ, θ )

Qh(λ, λ, 1)
∗

Ψ �

Qh(1, 1, λ2)
�

Qm(1, θ, rev2θ)
•



m > 0
2k ≥ m
m = 2`
h = k − `
Ψ = 01×1

∗ = θ
• = rev2θ

= −λθ
� = λ2

� = rev2(�)
= 1

M1b Same as the above block except (see Conditions to the right)
m = 2`− 1
Ψ = L
L as in (5.4)

M′1a Replace λ by −λ in the block M1a

M′1b Replace λ by −λ in the block M1b

M2a Same as block M1a except (see Conditions to the right)
2k + 1 ≥ m

m = 2`
h = k − `+ 1

M2b Same as the above block except (see Conditions to the right)

2k + 1 ≥ m
m = 2`− 1
Ψ = L
L as in (5.4)

M′2a Replace λ by −λ in the block M2a

M′2b Replace λ by −λ in the block M2b

Table 6: Blocks of type M

• The case h = 0 (i.e., k = `) in blocks M1a and M1b in Table 6. Here M1a is defined as follows

M1a =


Qm(λ,−θ, θ )

Ψ ∗

Qm(1, θ, rev2θ)
•

 , with
∗ = (λ− 1),
• = rev2(λ− 1)

= −λ(1− λ)
, (5.9)

while M1b is defined analogously.

• The case h = 0 (i.e., ` = k + 1) in blocks M2a and M2b in Table 6. Here M2a and M2b blocks are de-
fined in a similar way as M1a and M1b above.

The corresponding primed blocks are defined in an analogous way.
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Remark 5.8. The blocks of types X,Y , and S in Table 3 are degenerate cases of the blocks of types A,B,C,
and M in Tables 4-6, in the same way as the lists in Table 1 are degenerate cases of the lists in Table 2
(see Remark 3.18). More precisely, blocks of type A1 and A′1 degenerate onto type X1 blocks when m = 0.
Similarly with blocks of type A2, A

′
2 and X2. In the same way, type Y1 (resp., Y ′1) blocks are degenerate cases

of type B2 (resp., B′2) blocks, whereas blocks of type Y2 (resp., Y ′2) are degenerate cases of type C2b (resp.,
C ′2b) blocks, when m = 0. Finally, M1a and M2a blocks degenerate onto S1 blocks, and M1b,M2b degenerate
on S2 blocks when m = 0. Note, however, that there is no redundancy between blocks within Tables 3–6,
except the case of lists C1 and C′1, which overlap in list C̃1 (see Remark 3.12).

5.4. Spectral and singular structure of canonical palindromic blocks
In Tables 3–6 we have introduced different types of “canonical” blocks, which we claim have the structural

data given by the corresponding lists of elementary divisors and minimal indices in Tables 1 and 2; i.e., each
type of block is a T -palindromic quadratic realization for the corresponding p-quad irreducible list. Here we
prove that this is indeed the case.

Our first result is a technical lemma that leverages the knowledge of the spectral and singular structure
of unprimed blocks in order to determine that of their primed counterparts.

Lemma 5.9. Assume that any unprimed block in Tables 3–6 realizes the corresponding list in Tables 1–2.
Then any primed block in Tables 3–6 has the same spectral and singular structure as the corresponding
unprimed block, except for the elementary divisors associated with λ = ±1. In particular, the degrees of
elementary divisors associated with λ = −1 (resp., λ = 1) in the primed block are the same as the degrees of
the elementary divisors associated with λ = 1 (resp., λ = −1) in the unprimed block.

Proof. Our proof depends on several facts that relate the structural data of an arbitrary polynomial P (λ)
to that of the new polynomial Q(λ) := P (−λ). More specifically, the following statements hold:

(a) For any b ∈ F, (λ− b)α is an elementary divisor of P (λ) if and only if (λ+ b)α is an elementary divisor
of Q(λ).

(b) ωβ is an infinite elementary divisor of P (λ) if and only if ωβ is an infinite elementary divisor of Q(λ).

(c) P (λ) and Q(λ) have exactly the same left and right minimal indices.

Note that one can prove the above statements either directly, or by observing that Q(λ) is just obtained
from P (λ) by a special Möbius transformation [34]. In the latter case, statements (a)-(b) follow from [34,
Thm. 5.3] and (c) from [34, Thm. 7.3].

Now observe that the majority of the primed blocks in Tables 3–6 (i.e., all primed blocks except A′1), are
obtained by replacing λ with −λ in the corresponding unprimed blocks. Since the structural data of each
of those unprimed blocks contains only minimal indices and elementary divisors associated with 0,±1 and
∞, applying statements (a)–(c) gives the desired conclusion for the corresponding primed blocks.

The proof will be complete once we establish the relationship between the structural data of A1 and A′1,
which we do in two steps. For this, we introduce the notation A1(λ, a) to emphasize the dependence of A1

on the variable λ and the parameter a.

(i) From the assumption we know that the block A1(λ, a) has

2m︷ ︸︸ ︷
(λ− 1), . . . , (λ− 1), (λ − a)n, (λ − 1

a )n as
its elementary divisors, and has no minimal indices. Consequently, the block A1(λ,−a) also has no

minimal indices, and its only elementary divisors are

2m︷ ︸︸ ︷
(λ− 1), . . . , (λ− 1), (λ+ a)n, (λ+ 1

a )n.

(ii) Applying statement (a) and (c) to A1(λ,−a) shows that A1(−λ,−a) = A′1 has no minimal indices,

and its only elementary divisors are

2m︷ ︸︸ ︷
(λ+ 1), . . . , (λ+ 1), (λ − a)n, (λ − 1

a )n. Hence the Lemma holds
for the block A′1, and the proof is complete.
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Remark 5.10. Let P (λ) =
∑k
i=0Aiλ

i be a matrix polynomial of grade k and consider the new polynomial
Q(λ) := P (−λ) =

∑k
i=0(−1)iAiλ

i as in the proof of Lemma 5.9. Then

(revkQ)(λ) =

k∑
i=0

(−1)k−iAk−iλ
i = (−1)k

k∑
i=0

Ak−i(−λ)i = (−1)k(revkP )(−λ) .

Now if P (λ) is T -palindromic with grade of palindromicity k, then (revkQ)(λ) = (−1)kP (−λ)T = (−1)kQ(λ)T .
Furthermore, if k is even, then (revkQ)(λ) = Q(λ)T , so Q(λ) is also T -palindromic with grade of palin-
dromicity k.

Theorem 5.11. Any p-quad irreducible list L from Tables 1 and 2 is p-quad realizable. In particular, L is
realizable by the corresponding block in Tables 3–6.

Proof. The proof is carried out by analyzing separately each type of blocks in Tables 3–6. We only focus on
the unprimed blocks. Once these blocks have been analyzed, the result for the primed ones follows directly
from Lemma 5.9. Note that our proof is quite thorough and somewhat repetitive, but we have included
most of the arguments for the sake of completeness.

First of all, due to a very simple low-bandwidth anti-diagonal structure of the blocks from Tables 3–6,
one can verify directly that only the blocks of type S and M are singular, i.e., all other types of blocks
have a trivial singular structure. Second, it is also straightforward to see that all unprimed and primed
blocks are T -palindromic with grade of palindromicity 2. For the unprimed blocks, this is a consequence of
Lemma 5.6 and the fact that all splitter blocks in (5.4) are T -palindromic with grade of palindromicity 2.
For the primed blocks, it is a consequence of the result for the unprimed blocks and Remark 5.10.

We now investigate the spectral and singular structure of each block, showing that in each case it is
exactly the same as that of the corresponding structural data list in Table 1 or 2.

X Blocks: Applying Lemma 5.4 to type X1 blocks gives

Qm
(
λ− a, λ− 1

a
, (λ− 1)2

)
∼


(λ− a)m

(
λ− 1

a

)m
1

. .
.

1

 .
A permutation of the columns shows that the Smith form of Qm

(
λ− a, λ− 1

a , (λ− 1)2
)
is equal to

diag
(
Im−1 , (λ − a)m

(
λ− 1

a

)m ). The Smith form, together with Theorem 3.4, implies that the struc-
tural data of any type X1 block consists of exactly two elementary divisors (λ− a)m and

(
λ− 1

a

)m, i.e., is
exactly the same as that described in Table 1 for p-quad irreducible lists of type X1.

For type X2 blocks, we again use Lemma 5.4 to obtain

Qm
(

1, λ, (λ− 1)2
)
∼


λm

1

. .
.

1

 ,
and conclude that a type X2 block has a single finite elementary divisor λm. The fact that an X2 block is
T -palindromic, together with Remark 2.6(iii), implies that X2 also has a single infinite elementary divisor
ωm. Thus the structural data of a type X2 block is exactly the same as that described in Table 1 for a
p-quad irreducible list of type X2.
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Y Blocks: Applying Lemma 5.4 to type Y1 block gives

Y1 = Qm
(
λ− 1, λ− 1, λ

)
∼


(λ− 1)2m

1

. .
.

1

 .
This equivalence, together with Theorem 3.4 and the fact that Y1 is regular, implies that the structural data
of a Y1 block consists of just a single non-trivial elementary divisor (λ− 1)2m. Hence it is exactly the same
as that described in Table 1 for a list of type Y1.

Now consider blocks of type Y2. Applying Lemma 5.4 and Remark 5.5 to the lower-left and the upper-
right m×m blocks of Y2, respectively, we obtain:

Y2 ∼



Ĩm−1

0 (λ− 1)2m

(λ− 1)2 λ
(λ− 1)2 λ(1− λ) 0

0 (λ− 1)2

(λ− 1)2m λ
λ− 1

0
−λ 0
0 0

Ĩm−1


=: Y

(1)
2 .

Applying Lemma 5.2 and Remark 5.3 to the 2 × 2 blocks on the antidiagonal of Y (1)
2 , we obtain the

following unimodular equivalence:

Y2 ∼ Y
(1)
2 ∼


Ĩm

(λ− 1)2(m+1)

(λ− 1)2 λ(1− λ)
(λ− 1)2(m+1) λ− 1 −λ

Ĩm

 =: Y
(2)
2 .

Observe that the central 3×3 block of Y (2)
2 is a block of type F (λ) as in (5.5), whose finite spectral structure

consists of two finite elementary divisors (λ − 1)2m+3, (λ − 1)2m+3. This observation, the fact that Y2 is
regular, and Theorem 3.4 now imply that the structural data of Y2 is the same as that described in Table 1
for a list of type Y2.

S blocks: Applying Collapsing Lemma 5.4 and Remark 5.5 to the lower-left and the upper-right k × k
submatrices of S1, respectively, gives

S1 ∼



1

. .
.

1

λ2k

0 1

1
1

. .
.

1

λ2 0



∼

 Ĩk
0

Ĩk

 ∼ [ I2k
0

]
. (5.10)
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Note that the second unimodular equivalence in (5.10) is obtained by performing the following elementary
row and column operations in the specified order:

Colk+1 −→ Colk+1 − λ2 · Colk

Rowk −→ Rowk − λ2k · Rowk+1

Rowk+1 ←→ Rowk .

The unimodular equivalence (5.10) implies that S1 has no finite elementary divisors. This, together with
the fact that S1 is T -palindromic, also implies that it has no infinite elementary divisors (see Remark 2.6(iii)).
On the other hand, from (5.10) we observe that S1 is singular and that it has exactly one left η and one
right ε minimal index. Now using the Index Sum Theorem 3.4 we obtain the following chain of equalities:

rank(S1) · grade(S1) = δfin(S1) + δ∞(S1) + µ(S1)

2k · 2 = 0 + 0 + ε+ η

4k = ε+ η . (5.11)

The fact that ε = η (see Remark 2.6(iv)) and (5.11) imply that ε = η = 2k, i.e., the structural data of S1 is
identical to that described in Table 1 for a list of type S1.

For the S2 block, we apply Lemma 5.4 and Remark 5.5 to the lower-left and the upper-right k × k
submatrices of S2, respectively, to obtain the following unimodular equivalence:

S2 ∼



1

. .
.

1

λ2k

λ λ2

1 λ

1

1
1

. .
.

1

λ2



=: S
(1)
2 .

Applying the following sequence of elementary unimodular operations to S(1)
2

Colk+1 −→ Colk+1 − λ2 · Colk ,

Rowk+1 −→ Rowk+1 − λ · Rowk+2 ,

Rowk −→ Rowk − λ2k · Rowk+1 ,

Colk+2 −→ Colk+2 − λ · Colk+1 ,

leads to the unimodular equivalence

S2 ∼ S
(1)
2 ∼



1

. .
.

1
0

0 0
1 0

1

1
1

. .
.

1

0



=: S
(2)
2 .
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A straightforward row and column permutation of S(2)
2 shows that the Smith form of S2 is diag(I2k+1 , 0).

Consequently, we conclude that S2 has no finite elementary divisors, which together with the fact that S2

is T -palindromic also implies that it has no infinite elementary divisors either (see Remark 2.6(iii)).
Regarding the singular structure of S2, observe that S2 has exactly one left η and one right ε minimal

index. Again, S2 being T -palindromic and Remark 2.6(iv) imply that η = ε. Finally, a calculation analogous
to (5.11) shows that ε = η = 2k+1, showing that the structural data of the type S2 block is the one described
in Table 1 for a list of type S2.

A blocks: Applying Collapsing Lemma 5.4 and Remark 5.5 to the lower-left and the upper-right m×m
submatrices of A1, respectively, gives the unimodular equivalence

A1 ∼ A
(1)
1 :=



(λ− 1)Ĩm−1

(−1)m(λ− 1)(rev1p)m

pq
pq (λ− 1)2

. .
.

. .
.

pq (λ− 1)2

(λ− 1)2

(λ− 1)pm

(λ− 1)Ĩm−1

(λ− 1)2


,

where p = λ− a and q = λ− 1/a . Pre-multiplying A(1)
1 by diag(Im−1, (−1)m , In), and using Lemma 5.2

and Remark 5.3, gives the following unimodular equivalence

A1 ∼ A
(1)
1 ∼ A

(2)
1 :=



(λ− 1)Ĩm
pq(rev1p)

m

pq (λ− 1)2

. .
.

. .
.

pq (λ− 1)2

pm+1q (λ− 1)2

(λ− 1)Ĩm


.

Next, applying Lemma 5.4 to the central block of A(2)
1 gives the following unimodular equivalence:

A1 ∼


(λ− 1)Ĩm

pnqn−m(rev1p)
m

Ĩn−m−1

(λ− 1)Ĩm

 =: A
(3)
1

Since rev1p = −aq, we conclude that A(3)
1 , and consequently A1, has two finite elementary divisors pn and

qn, together with 2m finite elementary divisors (λ − 1). The Index Sum Theorem 3.4 and the fact that
A1 is regular, imply that A1 has no infinite elementary divisors, and that its spectral structure is the one
corresponding to the list of type A1 in Table 2.

In case when n = m (see (5.6)), one can show using transformations similar as above that

A1 ∼ A
(1)
1 =


(λ− 1)Ĩm−1

0 (−1)m(λ− 1)(rev1p)
m

(λ− 1)pm (λ− 1)2

(λ− 1)Ĩm−1

 . (5.12)
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After realizing that the the Smith form of the central 2×2 block of A(1)
1 in (5.12) is diag(λ−1, (λ−1)pmqm),

the desired result follows analogously.
For blocks of type A2, the unimodular reduction process is similar. We start by collapsing the lower-left

and the upper-right m×m blocks of A2 by using Lemma 5.4 and Remark 5.5, respectively, and obtain the
following equivalence:

A2 ∼



(λ− 1)Ĩm−1

λm(λ− 1)

λ
λ (λ− 1)2

. .
.

. .
.

λ (λ− 1)2

(λ− 1)2

(λ− 1)

(λ− 1)Ĩm−1

(λ− 1)2


=: A

(1)
2 .

Applying Lemma 5.2 and Remark 5.3 to A(1)
2 gives

A2 ∼ A(1)
2 ∼



(λ− 1)Ĩm

λm+1

λ (λ− 1)2

. .
.

. .
.

λ (λ− 1)2

(λ− 1)Ĩm


=: A

(2)
2 .

Further, collapsing the central block of A(2)
2 with Lemma 5.4 shows that

A2 ∼ A(1)
2 ∼ A(2)

2 ∼


(λ− 1)Ĩm

λn

Ĩn−m−1

(λ− 1)Ĩm

 =: A
(3)
2 , (5.13)

implying that A(3)
2 , and consequently A2, has 2m degree-one elementary divisors (λ − 1) and exactly one

elementary divisor λn. But since A2 is T -palindromic, from Remark 2.6(iii) we know that A2 must also
have exactly one infinite elementary divisor ωn. Further, (5.13) shows that A2 has trivial singular structure,
because A2 is regular, and therefore, the structural data of the type A2 block is exactly the same as the one
in Table 2 for lists of type A2.

In the limit case m = n (see (5.7)), one can use similar transformations to obtain

A2 ∼ A
(1)
2 =


(λ− 1)Ĩm−1

0 (λ− 1)λm

(λ− 1) (λ− 1)2

(λ− 1)Ĩm−1

 . (5.14)

Now the desired result follows from the fact that the Smith form of the central 2× 2 block of A(1)
2 in (5.14)

is given by diag(λ− 1, (λ− 1)λm).
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B blocks: Applying Lemma 5.4 and Remark 5.5 to the lower-left and the upper-right m×m submatrices
of B1, respectively, gives the unimodular equivalence B1 ∼ B

(1)
1 , where

B
(1)
1 :=



(λ− 1)Ĩm−1

(−1)m(λ+ 1)m(λ− 1)

(λ+ 1)2

(λ+ 1)2 (λ− 1)2

. .
.

. .
.

(λ+ 1)2 (λ− 1)2

(λ− 1)2

(λ+ 1)m(λ− 1)

(λ− 1)Ĩm−1

(λ− 1)2


.

Pre-multiplying B(1)
1 by diag(Im−1, (−1)m , In), and using Lemma 5.2 and Remark 5.3, give the unimodular

equivalence B1 ∼ B
(1)
1 ∼ B

(2)
1 , where

B
(2)
1 :=



(λ− 1)Ĩm

(λ+ 1)m+2

(λ+ 1)2 (λ− 1)2

. .
.

. .
.

(λ+ 1)2 (λ− 1)2

(λ+ 1)m+2 (λ− 1)2

(λ− 1)Ĩm


.

The last step in our unimodular reduction of B1 consists of applying Lemma 5.4 to the central block of B(2)
1 ,

and it produces

B1 ∼ B
(1)
1 ∼ B

(2)
1 ∼


(λ− 1)Ĩm

(λ+ 1)2n

Ĩn−m−1

(λ− 1)Ĩm

 =: B
(3)
1 . (5.15)

From (5.15) it is clear that the finite spectral structure of B(3)
1 , and consequently of B1, consists of 2m degree-

one elementary divisors (λ− 1) and exactly one elementary divisor (λ+ 1)2n. Now the Index Sum Theorem
3.4 and the regularity of B1 (see (5.15)) imply that B1 has no infinite elementary divisors. Therefore the
structural data of type B1 blocks is exactly the same as that described in Table 2 for lists of type B1.

The limit case m = n (see Remark 5.7) follows directly from B
(1)
1 , without the need of any extra

unimodular transformations, and the observation that the Smith form of the central 2× 2 block[
0 (−1)m(λ+ 1)m(λ− 1)

(λ+ 1)m(λ− 1) (λ− 1)2

]
,

is given by diag(λ− 1, (λ− 1)(λ+ 1)2m).
For blocks of type B2 we proceed as follows. First, we use Lemma 5.4 and Remark 5.5 to collapse the

lower-left and the upper-right m×m submatrices of B2, respectively, to obtain the equivalence
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B2 ∼ B
(1)
2 :=



(λ− 1)Ĩm−1

(λ− 1)m+1

(λ− 1)2

(λ− 1)2 λ

. .
.

. .
.

(λ− 1)2 λ

λ− λ2

(λ− 1)m+1

(λ− 1)Ĩm−1

λ− 1


.

Next use Lemma 5.2 and Remark 5.3 to unimodularly reduce B(1)
2 to the matrix polynomial B(2)

2 defined
by

B
(2)
2 :=



(λ− 1)Ĩm

(λ− 1)m+2

(λ− 1)2 λ

. .
.

. .
.

(λ− 1)2 λ
(λ− 1)m+2 λ

(λ− 1)Ĩm


.

Finally, applying Lemma 5.4 to the central block of B(2)
2 leads to the following chain of equivalences:

B2 ∼ B(1)
2 ∼ B(2)

2 ∼


(λ− 1)Ĩm

(λ− 1)2n

Ĩn−m−1

(λ− 1)Ĩm

 =: B
(3)
2 .

Clearly, the list of finite elementary divisors of B(3)
2 , and consequently of B2, consists of 2m degree-one

elementary divisors (λ− 1) and a single elementary divisor (λ− 1)2n. The fact that B2 is regular, together
with Theorem 3.4, now implies that B2 has no infinite elementary divisors. Hence the structural data of the
type B2 block is exactly the same as that described in Table 2 for lists of type B2.

C blocks: Let us first consider blocks of type C1b. We use Lemma 5.4 and Remark 5.5 to first collapse the
lower-left and the upper-right m×m corner blocks of C1b, respectively, and obtain the following equivalence:

C1b ∼



θĨm−2

θϕm−1

Q`(ϕ,ϕ, θ
2) θ2

H θ2

Q`(ϕ,ϕ, θ
2) θ2

θϕm−1

θ Ĩm−2

θ2


=: C

(1)
1b .

Next we apply Lemma 5.2 and Remark 5.3 at the junctions between the top two upper-right blocks and the
bottom two lower-left blocks of C(1)

1b , to get the unimodularly equivalent matrix polynomial:
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C
(2)
1b :=



θ Ĩm−1

ϕm+1

ϕ2 θ2

. .
.

. .
.

ϕ2 θ2

H θ2

ϕ2

. .
.

θ2

ϕ2 . .
.

ϕm+1 θ2

θ2

θ Ĩm−1



.

Using Lemma 5.4 and Remark 5.5 to collapse the second and the fourth blocks of C(2)
1b along the anti-diagonal

gives the following unimodular equivalence:

C
(2)
1b ∼



θ Ĩm−1

Ĩ`−1

ϕm+2`−1

−ϕθ
ϕ2 λϕ

ϕθ ϕ λ

θ2

ϕm+2`−1

Ĩ`−1

θ2

θ Ĩm−1


=: C

(3)
1b .

Now apply Lemma 5.2 and Remark 5.3 to the 2 × 2 blocks which are at the junctions of the central block
H (see (5.4)) with the adjacent blocks, to get:

C
(3)
1b ∼



θ Ĩm−1

Ĩ`

−ϕm+2`θ
ϕ2 λϕ

ϕm+2`θ ϕ λ

Ĩ`

θ Ĩm−1


. (5.16)

By computing all the nonzero minors, it can now be seen that the Smith form of the central 3× 3 block in
(5.16) is equal to diag

(
1 , ϕnθ , ϕnθ

)
. Hence, the Smith form of the whole C1b block is given by

diag
(
In−m , θ I2m−2 , ϕ

nθ , ϕnθ
)
,

so that the finite spectral structure of the block C1b is the one indicated in Table 2 for the list of type
C1. Equivalence (5.16) implies that C1b block is regular, and from Theorem 3.4 we conclude that C1b has
no infinite elementary divisors. Thus the structural data of type C1b blocks is exactly the same as that
described in Table 2 for lists of type C1 in the case where m is even.

When it comes to the type C1a block, it is useful to observe that a C1a block differs from a C1b block
only in the absence of the central block H and the adjacent ∗, • entries, and in the size of the lower-left and
upper-right corner blocks. Thus performing the unimodular reduction of C1a, analogous to the one used for
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the block C1b, gives the following equivalence

C1a ∼



θ Ĩm

Ĩ`−1
ϕm+2`

ϕm+2`

Ĩ`−1

θ Ĩm


=: C

(1)
1a . (5.17)

Now (5.17), together with the relation m + 2` = n, implies that the Smith form of the type C1a block
is diag

(
I2`−2 , θ I2m , ϕ

n , ϕn
)
. Furthermore, from (5.17) we know that C1a is regular, and so Theorem 3.4

now implies that C1a has no infinite elementary divisors. Hence the structural data of the block C1a is
exactly the same as that described in Table 2 for lists of type C1 when m is odd.

For the limit case m = n (i.e., ` = 0) for blocks of type C1a, we can get (see (5.8))

C1a ∼ C(1)
1a =


(λ− 1)Ĩm

0 (λ− 1)(λ+ 1)m

(λ− 1)(λ+ 1)m 0

(λ− 1)Ĩm

 ,

and the result immediately follows.
For blocks of type C2 the arguments are very similar to the ones for blocks of type C1. We start with

the blocks of type C2b. Applying Lemma 5.4 and Remark 5.5 to the lower-left and the upper-right m×m
submatrices of C2b, respectively, gives the following equivalence:

C2b ∼



θĨm−1

θm+1

Q`−1(θ, θ, λ)
rev2θ

K
λ

Q`−1(θ, θ, λ) λ

θm+1

θ Ĩm−1

θ


=: C

(1)
2b .

Next we apply Lemma 5.2 and Remark 5.3 at the junctions between the top two upper right blocks and
the bottom two lower left blocks of C(1)

2b , to obtain

C
(1)
2b ∼ C

(2)
2b :=



θ Ĩm
θm+2

θ2 λ

. .
.

. .
.

θ2 λ

K λ

θ2

. .
.

λ

θ2 . .
.

θm+2 λ

λ

θ Ĩm



.
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Now we collapse the second and the fourth blocks along the anti-diagonal of C(2)
2b using Lemma 5.4 and

Remark 5.5, to obtain the following equivalence:

C
(2)
2b ∼



θ Ĩm
Ĩ`−2

θm+2`−2

θ2

θ2 −λθ
θ2 θ −λ

λ

θm+2`−2

Ĩ`−2

λ

θ Ĩm


=: C

(3)
2b .

Finally, applying Lemma 5.2 and Remark 5.3 to the 2 × 2 blocks which are at the junctions of the central
block K with the adjacent blocks gives

C
(3)
2b ∼



θ Ĩm

Ĩ`−1
θm+2`

θ2 −λθ
θm+2` θ −λ

Ĩ`−1

θ Ĩm


. (5.18)

By a straightforward computation of the nonzero minors (or either by elementary row and column opera-
tions), it can be seen that the Smith form of the central 3 × 3 block in (5.18) is equal to diag

(
1 , θn , θn )

(recall that n = m+ 2`+ 1). Hence the Smith form of the whole C2b block is given by

diag
(
I2`−1 , θI2m , θ

n , θn
)
,

so that the finite spectral structure of the block C2b is the one indicated in Table 2 for the list of type C2
with m odd. Equivalence (5.18) implies that C2b is regular, and from Theorem 3.4 we conclude that C2b

has no infinite elementary divisors. Thus the structural data of the block C2b is exactly the same as that
described in Table 2 for lists of type C2 with m odd.

The arguments for the C2a block follow as a particular case of the ones for C2b, in a similar fashion as
the ones for the C1a block follow from the arguments used for the C1b block.

M blocks: We start by investigating the spectral and singular structure of type M1a blocks when h > 0.
Performing the following elementary row operations on M1a

Rowm+h −→ Rowm+h − λ2 · Rowm+h+1 ,
Rowm+h−1 −→ Rowm+h−1 − λ2 · Rowm+h ,

...
Rowm+1 −→ Rowm+1 − λ2 · Rowm+2 ,

(5.19)

only affects the second block along the anti-diagonal of M1a, i.e., Q(λ, λ, 1). In fact, the effect of the
unimodular transformations from (5.19) is that all anti-diagonal entries in the block Qh(λ, λ, 1) become 0,
i.e., Qh(λ, λ, 1) is replaced by Qh(0, 0, 1). We continue by performing the following elementary unimodular
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row operations
Rowm −→ Rowm + λ · Rowm+1 ,

Rowm−1 −→ Rowm−1 + λ · Rowm ,
...

Row1 −→ Row1 + λ · Row2 ,

(5.20)

so that all anti-diagonal entries in the upper right block Qm(λ,−θ, θ) become 0 as well. In summary, the
effect of performing elementary row operations from (5.19) and (5.20) onM1a gives the following equivalence:

M1a ∼



Qm(0, 0, θ )

Qh(0, 0, 1)
θ

0 1

Qh(1, 1, λ2)
λ2

Qm(1, θ,−λθ) rev2θ


=: M

(1)
1a .

We continue to reduce M1a by performing the following elementary column operations on M (1)
1a :

Col2 −→ Col2 + λCol1 ,
Col3 −→ Col3 + λCol2 ,

...
Colm+1 −→ Colm+1 + λColm .

(5.21)

The effect of these unimodular transformations is that all −λθ entries below the main anti-diagonal in the
lower left block Qm(1, θ,−λθ) become 0, as well as the entry rev2θ = −λθ at the junction of the fourth and
the fifth block along the anti-diagonal of M (1)

1a . The last set of elementary column operations we perform is
given by

Colm+2 −→ Colm+2 − λ2 Colm+1 ,
Colm+3 −→ Colm+3 − λ2 Colm+2, ,

...
Colm+h+1 −→ Colm+h+1 − λ2 Colm+h ,

(5.22)

and as their consequence, all λ2 entries below the main anti-diagonal in the block Qh(1, 1, λ2), as well as
the entry λ2 at the junction of the zero block and Qh(1, 1, λ2), become zero.

Performing all of the elementary operations from (5.19) – (5.22) on M1a gives the following equivalence

M1a ∼M (1)
1a ∼


(λ− 1)Ñm

Ñh λ− 1

0 1

Ĩh

(λ− 1) Ĩm

 , (5.23)

and so the Smith form of M1a is given by

diag
(
I2h , (λ− 1)I2m , 0

)
.

Hence, the complete list of finite elementary divisors of the block M1a consists of exactly 2m degree-one
elementary divisors (λ− 1), and is identical to the finite elementary divisor sublist of the typeM1 list given
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in Table 2 when m is even. The fact that M1a is T -palindromic and that it has no elementary divisors of the
form λβ implies that M1a also has no infinite elementary divisors, i.e., δ∞(M1a) = 0 (see Remark 2.6(iii)).

Now we turn to the question of determining the singular structure of M1a. The Smith form of M1a gives

dimNr(M1a) = dimN`(M1a) = 1 .

Hence M1a has just one left and one right minimal index, denoted by η and ε, respectively. From the Index
Sum Theorem 3.4 we have

µ(M1a) = 2 · rank (M1a)− δfin(M1a)− δ∞(M1a), which implies µ(M1a) = 4k . (5.24)

Observing that M1a is a T -palindromic matrix polynomial and recalling Remark 2.6(iv), together with
(5.24), give ε = η = 2k. Thus the structural data of the block M1a is exactly the same as that described in
Table 2 for lists of typeM1 when m is even.

The limit case h = 0 (i.e., k = `) for type M1a blocks follows directly from the strict equivalence (see
(5.9)) M1a ∼ diag(θI2m, 0), and the application of Theorem 3.4, which reads µ + 2m = 2 · 2m, so µ = 2m.
Since M1a is T -palindromic and it has just one right and one left minimal index, ε, η, respectively, it must
be that ε = η = m.

For the type M1b block, the analysis of the singular structure will be identical, whereas it only takes an
additional one row and one column elementary unimodular operation to obtain an analog of (5.23) for the
block M1b. For the sake of brevity and non-repetitiveness we omit the details.

The argument for the M2a and M2b blocks are nearly identical to those for the corresponding M1a and
M2b blocks, so we omit the details for these blocks as well.

6. Palindromic quadratic realization and some consequences

The main result of this work now easily follows from the results established in the previous sections.

Theorem 6.1. (T -Palindromic Quadratic Realization Theorem). A list of elementary divisors and minimal
indices L is p-quad realizable if and only if L is p-quad admissible.

Proof. Let us first assume that L is p-quad realizable, and let Q be a quadratic T -palindromic matrix
polynomial whose list of elementary divisors and minimal indices is L. First, L has p-quad symmetry (see,
for instance, Corollaries 8.1 and 8.2 in [32]). Secondly, L satisfies

G(L) ≤ rankQ =
1

2
(δ(L) + µ(L)),

where the second equality is an immediate consequence of Theorem 3.4. Hence L is p-quad admissible.
We now prove the converse. Assume that L is a p-quad admissible list of elementary divisors and minimal

indices. By Theorem 3.17, L is p-quad partitionable into p-quad irreducible sublists appearing in Tables 1
and 2. From Theorem 5.11 we have that each of those sublists are p-quad realizable, and that the direct
sum of these p-quad realizations is in fact a p-quad realization for L (see Lemma 5.1).

One of the practical motivations to consider p-quad realizability is to determine, given a T -palindromic
matrix polynomial P with grade at least two, whether or not there exists a T -palindromic matrix polynomial
of grade two that is spectrally equivalent to P . The formal definition of spectral equivalence of polynomials
P and Q can be found in [11, Def. 3.2], but in the end it reduces to P and Q having the same spectral
structure and the same number of minimal indices (left and right). What is important for us in this setting
is the following definition.

Definition 6.2. [11, Thm. 4.1] Let P be a matrix polynomial. A quadratic matrix polynomial Q is a strong
quadratification of P if the following three conditions hold:

(a) dimNr(P ) = dimNr(Q), and dimN`(P ) = dimN`(Q),
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(b) P and Q have the same finite elementary divisors.

(c) P and Q have the same infinite elementary divisors.

Unlike what happens with linearizations, there are always T -palindromic strong quadratifications for any
T -palindromic polynomial of even grade. This result is in the same direction as [11, Cor. 5.9], which states
that any (unstructured) matrix polynomial of even grade has a strong quadratification.

Corollary 6.3. Any T -palindromic matrix polynomial of even (nonzero) grade has a T -palindromic strong
quadratification.

Proof. Let P (λ) be a T -palindromic matrix polynomial of even grade `, and let L be the list of the elementary
divisors and minimal indices of P . Then L satisfies the following:

(a) G(L) ≤ rankP =
1

`
(δ(L) + µ(L)) ≤ 1

2 (δ(L) + µ(L)).

(b) L has p-quad symmetry.

Note that the equality in (a) is an immediate consequence of Theorem 3.4, while (b) follows from [32, Cors.
8.1-8.2] and [7, Thm. 3.6].

This shows that L is a p-quad admissible list and so, by Theorem 6.1, there is a quadratic T -palindromic
matrix polynomial Q(λ) whose list of elementary divisors and minimal indices is L. Then Q is a strong
quadratification of P , because both P and Q have the same finite and infinite elementary divisors, and the
dimensions of the left and right nullspaces of P and Q coincide.

By contrast with Corollary 6.3, not every T -palindromic matrix polynomial of odd grade has a T -
palindromic strong quadratification. For instance, the (scalar) T -palindromic polynomial p(λ) = (λ+ 1)3 of
grade 3 has no T -palindromic strong quadratification, since the odd degree elementary divisors associated
with a = −1 do not have even multiplicity (so that the list of elementary divisors of p does not have p-quad
symmetry). However, Theorem 6.1 shows that this is the only obstruction to the existence of T -palindromic
strong quadratifications.

Corollary 6.4. Let P be a T -palindromic matrix polynomial with odd grade ` ≥ 3. Then, the following
conditions are equivalent:

(i) There is a T -palindromic strong quadratification of P .

(ii) Any odd degree elementary divisor of P associated with a = −1 has even multiplicity.

Proof. Let L(P ) be the list of elementary divisors and minimal indices of P and recall that

L(P ) =
{
Lfin(P ) ; L∞(P ) ; Lleft(P ) ; Lright(P )

}
.

We first prove the implication (i) ⇒ (ii). Assume that Q is a T -palindromic strong quadratification of
P . Then, by Theorem 6.1, the list L(Q) has p-quad symmetry. The fact that Q is a strong quadratification
for P implies that P and Q have identical finite and infinite elementary divisors, i.e.,

Lfin(Q) = Lfin(P ) and L∞(Q) = L∞(P ) . (6.1)

Now relation (6.1) imply that L(P ) satisfies (1) in Definition 3.6, and so condition (ii) follows in particular
from (1c) in Definition 3.6.

Next we prove the implication (ii) ⇒ (i). By Theorem 6.1, it is enough to prove that L(P ) is p-quad
admissible. First note that L(P ) satisfies conditions (1a), (1b) and (2) in Definition 3.6 (see [32, Cor.
8.1] and [7, Thm. 3.6]). Also, any odd degree elementary divisor of L(P ) associated with a = 1 has even
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multiplicity (see [32, Cor. 8.2]). All these facts, together with the hypothesis (ii), imply that L has p-quad
symmetry. Finally, using Theorem 3.4, we get:

G(L) ≤ rankP =
1

`

(
δ(L) + µ(L)

)
≤ 1

2

(
δ(L) + µ(L)

)
.

Hence, L(P ) is p-quad admissible.

Remark 6.5. Let P be a T -palindromic matrix polynomial with odd grade satisfying condition (ii ) in
Corollary 6.4. Then L(P ) is p-quad symmetric, and this, together with Theorem 3.4, imply that rankP is
even. If P is regular, this in turn implies that the size of P is even. Then, Corollary 6.4 is in accordance
with the analogous result for regular unstructured polynomials in [28].

6.1. Separability of spectral and singular structures
A matrix polynomial P is completely singular if it has no elementary divisors at all (neither finite nor

infinite). This is the case, for instance, for the T -palindromic matrix polynomial L(λ) in (5.4). With the
goal of identifying the spectral and singular structures of a matrix polynomial at a glance, a particular
realizability subproblem of the question we address in this paper is the following:

Given a p-quad symmetric list of elementary divisors and minimal indices, determine whether or not
it can be realized by a T -palindromic quadratic matrix polynomial where the spectral and the singular
structures are separated.

In other words, given a list L = (Lreg,Lsing), where Lreg is a (p-quad symmetric) list of elementary
divisors (finite and/or infinite) and Lsing is a (p-quad symmetric) list of minimal indices (left and/or right),
determine whether or not there exists a T -palindromic quadratic matrix polynomial P of the form P =
Pr ⊕ Ps, where Pr is regular and comprises the spectral structure (given by Lreg) and Ps is completely
singular and comprises the singular structure (given by Lsing). This is the reason to introduce the following
definition.

Definition 6.6. (p-quad rs-realizability). The list L := (Lreg,Lsing), where Lreg is a list of elementary
divisors and Lsing is a list of minimal indices, is p-quad rs-realizable over a field F if there exist a T -
palindromic quadratic matrix polynomial P = Pr ⊕ Ps such that:

(i) Pr is regular and its elementary divisors are exactly the ones in Lreg, and

(ii) Ps is completely singular and its minimal indices are the ones in Lsing.

Note that in Definition 6.6 it is implicit that L must be a p-quad admissible/realizable list, otherwise
there is no chance for L to be p-quad rs-realizable. What makes this notion really interesting is that
not every p-quad realizable list is p-quad rs-realizable. For instance, the list L = (Lreg,Lsing), where
Lreg = {λ − 1, λ − 1} and Lsing = (Lleft,Lright), with Lleft = Lright = 1, is p-quad realizable by an M2b

type block (with m = 1, k = 0, which implies ` = 1, h = 0). More precisely, it is realized by the following
quadratic T -palindromic matrix polynomial (see Remark 5.7)

M2b =


0 0 0 λ(1− λ)
0 λ λ2 λ− 1
0 1 λ 0

λ− 1 λ(1− λ) 0 0

 .
On the other hand, L is not p-quad rs-realizable. The reason is that Lreg by itself is not p-quad admissible.
Clearly a necessary and sufficient condition for a list L = (Lreg,Lsing) to be p-quad rs-realizable is that each
of Lreg and Lsing are p-quad realizable. However, in Theorem 6.7 we provide a simpler characterization of
p-quad rs-realizability.
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Theorem 6.7. The list L := (Lreg,Lsing), where Lreg is a list of elementary divisors and Lsing is a list of
minimal indices, is p-quad rs-realizable if and only if L satisfies the following two conditions:

(i) G(L) ≤ 1
2δ(L), and

(ii) L has p-quad symmetry.

Proof. We start by observing that conditions (i)–(ii) in the statement are equivalent to saying that L is
p-quad admissible and satisfies condition (i). Also, one can easily check that the following relations hold

δ(L) = δ(Lreg)
δ(Lsing) = 0

,
G(L) = G(Lreg)
G(Lsing) = 0

, and µ(L) = µ(Lsing)
µ(Lreg) = 0

. (6.2)

Now we are ready to prove the “only if” part of the statement. Since L is p-quad realizable, it is also
p-quad admissible by Theorem 6.1. Moreover, the assumption that L is rs-realizable implies that Lreg is
p-quad realizable, which together with (6.2) give

G(L) = G(Lreg) ≤
1

2
(δ(Lreg) + µ(Lreg)) =

1

2
δ(Lreg) =

1

2
δ(L);

here the inequality follows again from Theorem 6.1.
In order to prove the converse it suffices to show that both Lreg and Lsing are p-quad realizable, or by

Theorem 6.1, that both lists are p-quad admissible. Since L is p-quad admissible, it has p-quad symmetry,
and so both Lreg and Lsing have p-quad symmetry as well. Now the proof will be complete if we can show
that both Lreg and Lsing also satisfy condition (a) in Definition 3.7. From (6.2) it is clear that that is the
case for Lsing. As for Lreg, we also use (6.2) and the hypothesis in the statement (i) to obtain

G(Lreg) = G(L) ≤ 1

2
δ(L) =

1

2
δ(Lreg) =

1

2
(δ(Lreg) + µ(Lreg)) ,

which concludes the proof.

7. The T -Alternating QRP

Another important family of structured matrix polynomials that arise in applications consists of T -
alternating matrix polynomials [29, 31, 37]. A particular subset of those polynomials, the T -even matrix
polynomials, is the main object of study in this section.

Definition 7.1 (T -even, [29]). A nonzero n × n matrix polynomial P of grade k ≥ 0 is said to be T–even
if P (λ)T = P (−λ).

In [31, Thm. 5.4] the authors showed that for any T -even matrix polynomial of odd degree, one can
explicitly construct a T -even strong linearization. Furthermore, [31, Thm. 5.5] shows that not all T -even
matrix polynomials of even degree have a T -even strong linearization. One of the main results in this section
shows that every T -even matrix polynomial of even grade always has a T -even strong quadratification. It
turns out that this is an easy consequence of the solution of what we call the T -even QRP problem. Namely,
given a list L̂ of elementary divisors and minimal indices, we determine if there exists a T -even quadratic
matrix polynomial Q such that L(Q) = L̂ and, in the affirmative case, show how to construct such a Q in a
simple and transparent way.

The key tools for solving the T -even QRP are two special Möbius transformations of matrix polynomials.
More specifically, the Cayley transformations c+1, c−1 : F∞ → F∞ (where F∞ := F ∪ {∞}) are defined by:

c+1(µ) =
1 + µ

1− µ
, c−1(µ) =

µ− 1

µ+ 1
,

where c+1(∞) = −1, c−1(∞) = 1, c+1(1) =∞, and c−1(−1) = ∞. It is straightforward to see that c−1 =
(c+1)−1. Both c+1 and c−1 are rational transformations of F∞, and they induce Möbius transformations
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on the space of all grade k matrix polynomials P given by [34, Ex. 3.10]:

C+1(P )(µ) := (1− µ)kP

(
1 + µ

1− µ

)
, C−1(P )(µ) := (µ+ 1)kP

(
µ− 1

µ+ 1

)
. (7.1)

In particular, we have that P is a T -palindromic quadratic matrix polynomial if and only if C+1(P ) (or
C−1(P )) is a T -even quadratic matrix polynomial [34, Table 9.1]. Equivalently, C+1 and C−1 each give a
one-to-one correspondence between the following spaces of structured matrix polynomials of the same size:

{T -palindromic quadratic matrix polynomials} ←→ {T -even quadratic matrix polynomials}.

Exactly these bijections, together with corresponding ones for lists of elementary divisors and minimal
indices, will allow us to easily solve the T -even QRP by leveraging the solution of the T -palindromic QRP.

Definition 7.2. Let L be a list of elementary divisors and minimal indices. Then κ+1(L) and κ−1(L) are
new lists of elementary divisors and minimal indices obtained from L in the following way:

(1) (a) For a 6= 1, the finite elementary divisors of the form (λ− a)β in L are replaced by the elementary
divisors of the form (λ− c+1(a))β in κ+1(L).

(b) Elementary divisors of the form (λ− 1)β in L are replaced by the infinite elementary divisors ωβ
in κ+1(L).

(c) Infinite elementary divisors of the form ωβ in L are replaced by the finite elementary divisors
(λ+ 1)β in κ+1(L).

(2) (a) For a 6= −1, the finite elementary divisors of the form (λ−a)β in L are replaced by the elementary
divisors of the form (λ− c−1(a))β in κ−1(L).

(b) Elementary divisors of the form (λ+ 1)β in L are replaced by the infinite elementary divisors ωβ
in κ−1(L).

(c) Infinite elementary divisors of the form ωβ in L are replaced by the finite elementary divisors
(λ− 1)β in κ−1(L).

(3) The left and right minimal indices in κ+1(L) and in κ−1(L) are each identical to the ones in L.

The importance of Definition 7.2 stems from the fact that if L represents the structural data of some
polynomial Q, then κ+1(L) (resp., κ−1(L)) will be the structural data list of C−1(Q) (resp., C+1(Q)) [34,
Thms. 5.3, 7.5].

We now introduce notions for the T -even QRP that are analogous to the ones from Section 3 for the
T -palindromic QRP.

Definition 7.3. (e-quad Realizability). A list L of elementary divisors and minimal indices is said to be
e-quad realizable over the field F if there exists some T -even quadratic matrix polynomial over F whose
elementary divisors and minimal indices are exactly those in L.

Definition 7.4. (e-quad Symmetry). A list L of elementary divisors and minimal indices over an alge-
braically closed field F is said to have e-quad symmetry if the following conditions are satisfied:

(1) (a) for any a 6= 0,∞, and β ≥ 1, the elementary divisors (λ− a)β and (λ+ a)β appear in L with the
same multiplicity (i.e., they appear exactly the same number of times, perhaps zero),

(b) any odd degree elementary divisor in L associated with the eigenvalues a = 0,∞ has even multi-
plicity.

(2) the ordered sublist of left minimal indices is identical to the ordered sublist of right minimal indices.

Definition 7.5. (e-quad Admissibility). A list L of elementary divisors and minimal indices is said to be
e-quad admissible if the following conditions are satisfied:
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(a) G ≤ 1
2

(
δ + µ

)
,

(b) L has e-quad symmetry.

As in the case of p-quad admissibility (see Definition 3.7), condition (b) in Definition 7.5 implies condition
(c) in Remark 3.8.

Finally, we are ready to prove the main result of this section, which can be viewed as the counterpart
for T -even matrix polynomials of Theorem 6.1 for T -palindromic matrix polynomials.

Theorem 7.6. (e-quad Realization Theorem). A list of elementary divisors and minimal indices L is e-quad
realizable if and only if L is e-quad admissible.

Proof. Assume that L is an e-quad realizable list. Then L satisfies (a) in Definition 7.5 as an immediate
consequence of Theorem 3.4 (see the proof of Theorem 6.1). It also satisfies condition (b) in Definition 7.5
due to [31, Thm. 4.2]. Hence, L is e-quad admissible.

Conversely, let L be an e-quad admissible list of elementary divisors and minimal indices, so that L has
e-quad symmetry. First, note that the list κ+1(L) has p-quad symmetry, i.e., κ+1(L) satisfies condition (b)
in Definition 3.7. This can be seen by observing that the role played by the eigenvalues a = 0,∞ in the
list L is now played by c+1(0) = 1 and c+1(∞) = −1 in the list κ+1(L). Second, the partial multiplicity
sequence associated with c+1(λ0) in κ+1(L) coincides with the partial multiplicity sequence associated with
λ0 in L [34, Thm. 5.3], hence

δ(κ+1(L)) = δ(L) and G(κ+1(L)) = G(L) . (7.2)

Relation (7.2), together with the fact that µ(κ+1(L)) = µ(L) (see Definition 7.2(vii)), imply that the
list κ+1(L) also satisfies condition (a) in Definition 3.7. Thus, κ+1(L) is p-quad admissible. Now from
Theorem 6.1 we know that κ+1(L) is p-quad realizable by a T -palindromic quadratic matrix polynomial Q.
Further, C+1(Q) is a T -even quadratic matrix polynomial [34, Thm. 9.7], whose list of elementary divisors
and minimal indices is precisely κ−1

(
κ+1(L)

)
= L [34, Thms. 5.3, 7.5]. Therefore, L is e-quad realizable by

C+1(Q), and this concludes the proof.

We can also state analogs of Corollaries 6.3 and 6.4 for T -even matrix polynomials.

Corollary 7.7. Any T -even matrix polynomial of even (nonzero) grade has a T -even strong quadratification.

Proof. Let P be a T -even matrix polynomial of even grade k. Then C+1(P ) is a T -palindromic matrix
polynomial of grade k [34, Thm. 9.7]. By Corollary 6.3, we also know that C+1(P ) has a T -palindromic
strong quadratification Q. On the other hand, C−1(Q) is a T -even quadratic matrix polynomial [34, Thm.
9.7], and a strong quadratification of C−1(C+1(P )) = 2kP [34, Cor. 8.6], [29, Prop. 2.5]. Consequently,
C−1(Q) is a T -even strong quadratification of P .

Corollary 7.8. Let P be a T -even matrix polynomial with odd grade ` ≥ 3. Then the following statements
are equivalent:

(i) There is a T -even strong quadratification of P .

(ii) Any odd degree elementary divisor of P associated with a = 0 has even multiplicity.

Proof. (i) ⇒ (ii): Let us assume that Q is a T -even strong quadratification of P . Then C+1(Q) is a T -
palindromic strong quadratification of C+1(P ) [34, Cor. 8.6, Thm. 9.7]. By Corollary 6.4, any odd degree
elementary divisor of C+1(P ) associated with −1 has even multiplicity, and consequently, any odd degree
elementary divisor of P associated with a := κ+1(−1) = 0 has even multiplicity [34, Thm. 5.3].

(ii)⇒ (i): Assume that any odd degree elementary divisor of P associated with a = 0 has even multiplic-
ity. Then any odd degree elementary divisor of C+1(P ) associated with κ−1(0) = −1 has even multiplicity
[34, Thm. 5.3]. Now Corollary 6.4 implies that C+1(P ) has a T -palindromic strong quadratification Q, and
consequently, C−1(Q) is a T -even strong quadratification of C−1(C+1(P )) = 2kP [34, Cor. 8.6, Thm. 9.7]
[29, Prop. 2.5]. But then C−1(Q) is a T -even strong quadratification of P as well.
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7.1. Canonical T -even Lists and Blocks
In this last section we briefly discuss the solution of the T -even QRP, i.e., we show how to explicitly

construct a quasi-canonical T -even quadratic realization for any T -even admissible list L. Since the con-
struction procedure is very similar to the one used in the solution of the T -palindromic QRP, we give only
an outline.

Let L be a list of elementary divisors and minimal indices that is e-quad admissible. Then the list κ+1(L)
is p-quad admissible and can be realized by a direct sum of T -palindromic quadratic canonical blocks from
Tables 3–6, say P := P1 ⊕ · · · ⊕ Ps. From [34, Prop. 3.16(c)] we know that

C+1(P ) = C+1(P1 ⊕ · · · ⊕ Ps) = C+1(P1)⊕ · · · ⊕ C+1(Ps) . (7.3)

Since each of the blocks C+1(Pi) is a T -even quadratic matrix polynomial [34, Thm. 9.7], so is C+1(P ). Now
[34, Thms. 5.3, 7.5] implies that the elementary divisors and minimal indices of C+1(P ) are exactly those
in L, i.e., C+1(P ) is an e-quad realization of L. But C+1(P ) is just a direct sum of C+1(Pi)’s, where each
C+1(Pi) has the same sparsity pattern (i.e., with low “anti”-bandwidth structure) as Pi.

In summary, applying the Cayley transform C+1 to blocks from Tables 3–6 produces a complete list
of T -even quadratic blocks that can be used in constructing a Kronecker-like quasi-canonical form for any
T -even quadratic matrix polynomial. For instance, the T -even block corresponding to type A2 blocks after
applying C+1 is:

Qm(1 + µ,−2µ, (2µ) 2)

Qn−m(1− µ, 1 + µ, (2µ)2)
∗

Qm(1− µ, 2µ, (2µ)2)
∗


, (0 < m ≤ n),

where ∗ = C+1((λ− 1)2)(µ) = (1− µ)2
(

1+µ
1−µ − 1

)2
= (2µ)2.

8. Concluding Remarks

In this paper we have provided a complete solution to both the T -palindromic quadratic realizability
problem (QRP) and to the T -even QRP, over an arbitrary algebraically closed field of characteristic dif-
ferent from two. Our solutions have several clear advantages over previous approaches to structured and
unstructured inverse polynomial eigenvalue problems. In particular, we have shown not only how to build
quadratic realizations, but also have been able to give simple characterizations of those lists of structural
data that comprise the complete spectral and singular structure of some quadratic T -palindromic matrix
polynomial (respectively, of some quadratic T -even matrix polynomial). An important consequence of these
characterizations are two further results — characterizations of those T -palindromic (resp., T -even) ma-
trix polynomials for which there exists a T -palindromic (resp., T -even) quadratification. While parts of
these results have appeared in several recent works [2, 10, 12, 22], in this paper these issues have now been
completely settled in full generality.

Moreover, our systematic approach to constructing a quadratic T -palindromic (resp., T -even) matrix
polynomial that realizes a list of admissible structural data has the additional desirable feature of producing
a quadratic realization from which the given structural data can be easily read off in a completely transparent
fashion. This is in stark contrast to the related results in [2, 12]. Such transparency was achieved in this
paper by using direct sums of low bandwidth T -palindromic (resp., T -even) blocks, resulting in quadratic
realizations with a distinct resemblance to the Kronecker canonical form for general (unstructured) matrix
pencils.
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The main disadvantage of our direct-sum-of-canonical-blocks approach to the QRP is the difficulty in
extending this technique to the corresponding realizability problems for matrix polynomials of higher de-
grees. As the degree of the desired realizations increases, there is likely to be a combinatorial explosion in
the number of irreducible cases to be considered. Thus an argument of this type that applies to matrix
polynomials of all degrees seems out of reach and impractical. On the other hand, this disadvantage has
had the positive effect of stimulating research into developing new ways of constructing matrix polynomials
that transparently reveal their structural data, such as [15], in order to try to overcome this obstacle. This
theme will continue to motivate future research.
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