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Introduction 

The vast majority of quantitative models representing ecological systems are of a "local" 
nature, showing the dynamics of competing species, host-parasite, or some combination 
of the two. We say they are dynamic because they show how the population sizes change 
over time and whether the species under consideration persist in the long run. For the 
most part, only a few species are modeled in part due the fact that data needed for 
parameters is difficult to obtain. 

While work certainly has been done on the more overall, "global" nature of the ecosystem 
such work is infrequent as has not perhaps resulted in tools usable in the field by working 
biologists and ecologists due to the volume of data needed to make these models 
workable. In this material, an ecosystem is represented by a graph (in the mathematical 
sense of a collection of vertices and edges as opposed to a plot). This graph is 
straightforward to generate, easy to discuss as well as modify, and leads to valuable 
results concerning the relative importance of each species in the community to the overall 
structural stability of the community. 

A Graph of an Ecosystem 

A directed graph representing the ecosystem under consideration is set up as follows:  

1. for each species there is a node  
2. there is a node for the environment itself  
3. there is a directed line segment going from node i to node j  

if the species associated with node j predates upon or feeds off of the species of node i. 

For example, suppose we have a pond with 2 species of photosynthetic algae, three 
species of herbaceous algae, and one bottom feeder. Then a graph consistent with above 
might look like: 



 

where vertex 1 is for the environment; 2 and 3 for the photosynthetic algae etc. One may 
then view the arrows as showing how such resources as energy or particular nutrients 
flow through the ecosystem. The graph will probably change somewhat depending on 
what resource is being considered. 

If, for example, the resource is energy, then at all levels, energy is being released back 
into the environment, so there would be additional arrows from each vertex back to 
vertex 1. 

It is common to "label" graphs by associating something with each arrow. In the context 
here, if a substance such as mercury were of interest, a label might be established 
showing the relative concentration factor that occurs due to one specie feeding off of 
another. For example, if one type of fish fed off of another and a 5 fold increase in 
mercury resulted, then the arrow from the vertex of the prey to the predator could be 
labeled with a 5. 

The graph described is then 

1. straightforward to set up  
2. provides macroscopic information about the structure of the ecosystem  
3. can be a concise tool for communicating information about an ecosystem  
4. does not require vast amounts of difficult to obtain data concerning individual 

species population dynamics. 

The graph could certainly be constructed by hand although in complex cases, one can 
envision applying the software power provided by a geographic information system 
(GIS) so that geographic relationships might also be incorporated. 

 

 

 

 



The Matrix of a Graph 

A great deal may be deduced about the structure of the ecosystem through its graph. 
However, the graph by itself has most of its value as a pictoral entity; analysis of it is 
often done with its associated "adjacency matrix" (if the graph has n vertices then its 
adjacency matrix, A, is nxn with entries defined as 

aij = 1 if an arrow goes from vertex j to i  

0 otherwise 

hence for the graph defined above, the adjacency matrix is 

 

Three entities associated with the matrix of a graph are of potential value in the study of 
an ecosystem: 

• the dominant eigenvalue  
• an eigenvector of the dominant eigenvalue  
• powers of the matrix  

In this section we examine and justify each. As a starting point, we note that for such a 
graph and matrix, 

• the n row sums (sum of entries in each row) tell us many different species each 
specie has as food sources  

• the n column sums tell us how many species each specie serves as possible food 
sources for.  

We propose using the dominant eigenvalue of the adjacency matrix as a measure of the 
structural diversity of the ecosystem. (The dominant eigenvalue for such a nonegative 
matrix is the eigenvalue of largest absolute value. The Perron-Frobenius Theorem for 
nonegative matrices tells us that it is positive and has a positive associated eigenvector. 
Two results from linear algebra support such an interpretation: 

• the dominant eigenvalue lies in between the smallest and largest row sums or 
columns sums (which ever bound is tighter) see Project #10  

• if an entry in a nonegative matrix is increased then the dominant eigenvalue also 
increases.  

 

 

http://www.prenhall.com/divisions/esm/app/ph-linear/leon/html/perron.html
http://www.prenhall.com/divisions/esm/app/ph-linear/leon/html/proj10.html


 

The dominant eigenvalue is easy to compute and thus provides a concise measure of an 
important attribute of the ecosystem. In the above example, the dominant eigenvalue is 
1.748. 

Next, by using standard graph theoretical notions one may examine powers of the matrix 
A with the information that 

• the i,j th entry of Ak is the number of different paths from vertex i to vertex j of 
length k (by length of a path we mean the number of arrows in it).  

This is useful information about the structure of the ecosystem. The more paths there are 
leading to a given specie, the less vulnerable that specie is to starvation due to the loss of 
a specie in the chain prior to it; it simply has alternative feeding opportunities. In 
particular, species with only a single path leading to them may be considered to be highly 
vulnerable. Similarly, a specie with only one path leading from it in the graph may be 
particularly valuable. 

In the above example, one computes that A3 is 

 
and thus, for example, that there are 4 different paths for food (or nutrients or energy, 
depending on what is under consideration) to go from the environment to species 7.  

In general, suppose an ecosystem has r trophic levels and that the very last level has q 
different species in it. Then based upon the above discussion, if one looks at the first 
column of the matrix Ar, then the sum of the last q entries in that column should show 
how many different food chains there are through the entire ecosystem. 

Associated with the positive, dominant eigenvalue of the adjacency matrix is a positive 
eigenvector (since a scalar multiple of an eigenvector is also an eigenvector, we are 
actually referring to any representative). It is the purpose of this section to explore an 
interpretation of that vector in the context of an ecosystem. 

The dominant eigenvector has n components; one for each species in the ecosystem as 
well as one for the environment. These components may have the interpretation of 
showing, for a given species relative to other species, how many food paths pass through 
it. We establish this mathematically as follows. 

 

 

 



If u denotes an n dimensional column vector with one for all entries, so that u = (1, 1, 1, . 
. . 1)t 

then the column Au has the row sums of A as entries, and similarly, Ak u has the rows 
sums of the kth power of A as entries. Taking the previous discussion into account, Ak 
u has as its ith entry the number of food paths to specie i of length k or less. If we 
examine the components of the vector 

lim Ak u 

k->oo 

it shows the number of paths going to each specie of any length. While the actual 
components of this vector have no meaning, the values relative to one another do, 
showing the flow to each member of the community. 

Now mathematically it may be shown  that the vector Ak u becomes the dominant 
eigenvector of A as k becomes large. In the simple ecosystem above, this vector (or any 
scalar multiple of it) is (.592 , .338,.338,.194,.194,.387,.443)t 

The 4th, 5th and 6th components show for the corresponding species that species 6 has 
twice the feeding opportunities that species 4 and 5 do. 

Conclusion 

A graph may be easily set up to visually show nutrient flow between the species 
comprising a community. Additionally, by examining the associated matrix of this graph, 
an overall measure of diversity of flows throughout the ecosystem may be obtained (the 
dominant eigenvalue), the number of paths from one specie to another may be calculated 
by powers of the matrix, and the relative flow to any specie may be obtained by 
comparing components of the dominant eigenvector. These results then provide a 
quantitative measure for describing the macroscopic structure of an ecosystem. 

 

 

 

 

 

 

 

 

 



Problems 

Suppose an ecosystem is represented graphically as: 

 

Part I: Using linear algebraic techniques, decide which species in the ecosystem are 
critical to the stability of the system, and which are not. 

Part II: Suppose that the salmon are economically important to the area that it resides in 
(true in the Pacific Northwest, for example). If there are pollutants entering the waters 
which threaten some of the algae, which ones are most critical to the welfare of the 
salmon? Can you demonstrate this mathematically? What are the dominant eigenvalue 
and eigenvector of this ecosystem? How would you interpret them? If the salmon can no 
longer consume algae 3 and 4, how do your computations change? Are the new numbers 
reflective of the changes made in the ecosystem? 

In general, how would you interpret the dominant eigenvalue of the ecosystem? Suppose, 
for sake of discussion that we have two different ecosystems with the same number of 
species. The first one has a dominant eigenvalue of 2.8 while the second one has a 
dominant eigenvalue of 1.4. How would you compare them? 
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