### 6.4: Type I and Type II errors

Type I error: Reject  $H_0$  when  $H_0$  is true

Type II error: Accept  $H_0$  when  $H_0$  is false

test's Level of Significance The probability of committing a Type I Error is called the

|     | Reject H <sub>0</sub> | Accept $H_0$     |                |
|-----|-----------------------|------------------|----------------|
| 131 | Type I error          | Correct Decision | $H_0$ is True  |
|     | Correct decision      | Type II Error    | $H_0$ is False |

For example,  $H_0$ , given any fixed value of the true  $\mu$  (with the additive). If  $H_0$  is false, we may investigate the probability of accepting

$$P(\text{Type II Error} \mid \mu = 25.750)$$

$$= P(\overline{Y} < 25.718 \mid \mu = 25.750)$$

$$= P\left(\frac{\overline{Y} - 25.750}{2.4/\sqrt{30}} < \frac{25.718 - 25.750}{2.4/\sqrt{30}}\right)$$

$$= P(Z < -0.07)$$

0.4721

133

 $\beta$  is a function of presumed value of  $\mu$ 

raise the fuel efficiency to 26.8 mpg, then If in previous example, the gasoline additive is so effective to

$$P(\text{Type II Error} \mid \mu = 26.8)$$

$$= P( \text{ accept } H_0 \mid \mu = 26.8)$$

$$= P(\overline{Y} < 25.718 \mid \mu = 26.8)$$

$$= P(Z < -2.47) = 0.0068$$

## Recall Fuel Efficiency Example from 6.2

₽ ..  $\mu = 25.0$ Additive is not effective.

 $\mathcal{H}_1$  :  $\mu > 25.0$ Additive is effective

With  $y^* = 25.718$  as critical value we have,

$$P(\text{Type I Error}) \\ = P(\text{ reject } H_0 \mid H_0 \text{ is true }) \\ = P(\overline{Y} \ge 25.718 \mid \mu = 25.0) \\ = P(\frac{\overline{Y} - 25.0}{2.4/\sqrt{30}} \ge \frac{25.718 - 25.0}{2.4/\sqrt{30}}) \\ = P(Z \ge 1.64) \\ = 0.05$$

132

#### Figure 6.4.2



134

#### Figure 6.4.3



## Power := $1-\beta$ = P( Reject $H_0 \mid H_1$ is true)

Power Curve: Power vs.  $\mu$  values



137

Power curves are useful for comparing different tests.

Comparing Power Curves: steep is good Figure 6.4.5 Power curves tell you about the performance of a test.



138

### The effect of $\alpha$ on $1-\beta$ : Fig. 6.4.6





# Increasing $\alpha$ decreases $\beta$ and increases the power

139

But this is not something we normally want to do

(reason:  $\alpha = Probability of Type I Error)$ 

figure. The effect of  $\sigma$  and n on  $1-\beta$ . is illustrated in the next

141

Increasing the Sample Size Example 6.4.1 We wish to

$$H_0: \mu = 100 \quad \text{vs.} H_1: \mu > 100$$

0.60 when  $\mu = 103$ . at the  $\alpha=0.05$  significance level and require  $1-\beta$  to equal

What is the smallest sample size that achieves the objective? Assume normal distribution with  $\sigma = 14$ .

#### ANSWER:

Observe that both lpha and eta are given.

used). Solving simultaneously will give the needed n. we use  $\alpha$ ), and one in terms of  $H_1$  distribution (where  $\beta$  is the critical value  $y^*$ : one in terms of  $H_0$  distribution (where To find n we follow the strategy of writing two equations for

If  $\alpha = 0.05$ , we have,

$$\alpha = P(\text{ reject } H_0 \mid H_0 \text{ is true })$$

$$= P(\overline{Y} \ge y^* \mid \mu = 100)$$

$$= P\left(\frac{\overline{Y} - 100}{14/\sqrt{n}} \ge \frac{y^* - 100}{14/\sqrt{n}}\right)$$

Since  $P(z \ge 1.64) = 0.05$ , we have

Ш

 $P(Z \ge \frac{V^* - 100}{14/\sqrt{n}}) = 0.05$ 

$$\frac{y^* - 100}{14/\sqrt{n}} = 1.64$$

Solving for  $y^*$  we get  $y^* = 100 + 1.64 \cdot \frac{14}{\sqrt{n}}$ 

$$1-\beta = P(\text{reject } H_0|H_1 \text{ is true})$$

$$= P(\overline{Y} \ge y^* \mid \mu = 103)$$

$$= P\left(\frac{\overline{Y} - 103}{14/\sqrt{n}} > \frac{Y^* - 103}{14/\sqrt{n}}\right)$$

$$=P(Z\geq \frac{y^*-103}{14/\sqrt{n}})$$

$$= 0.60$$

Since  $P(Z \ge -0.25) = 0.5987 \approx 0.60$ ,

$$\frac{14}{14/\sqrt{n}} = -0.25 \quad \Rightarrow \quad y^* = 103 - 0.25 \cdot \frac{14}{\sqrt{n}}$$

145

146

Finally, putting together the two eqns for  $y^*$  we have

$$100 + 1.64 \cdot \frac{14}{\sqrt{n}} = 103 - 0.25 \cdot \frac{14}{\sqrt{n}}$$

to be taken to guarantee the desired precision. which gives n = 78 as the minimum number of observations

## 6.4 (Cont.) Decision for Non-Normal Data

We assume the following is GIVEN:

- a set of data
- a pdf  $f(y;\theta)$
- $\theta = \text{unknown parameter}$
- $\theta_0 =$  given value (associated with  $H_0$ )  $\hat{\theta} =$  a sufficient estimator for  $\theta$
- = a sufficient estimator for  $\theta$

A one (right) sided test is

$$H_0: \theta = \theta_0$$
 vs.  $H_1: \theta > \theta_0$ 

Similarly we may consider left-sided tests or two sided tests.

uniform pdf Example 6.4.2 A random sample of size 8 is drawn fromthe

$$f(y,\theta) = \frac{1}{\theta}, \quad 0 \le y \le$$

for the purpose of testing

$$H_0: \theta = 2.0$$
 vs.  $H_1: \theta < 2.0$ 

probability of a Type II error when  $\theta = 1.7$ ? at the  $\alpha=0.10$  level of significance. The decision ruled is based on  $\hat{\theta}=Y_{\rm max}$ , the largest order statistic. What is the

and the decision rule is "Reject  $H_0$  if  $Y_{\text{max}} \leq c$ " ANSWER: We set  $P(Y_{\text{max}} \le c \mid H_0 \text{ is true }) = 0.10$ 

The pdf of  $Y_{\text{max}}$  given that  $H_0$  is true is

$$f_{\text{fraw}}(y; \theta = 2) = 8\left(\frac{y}{2}\right)^7 \cdot \frac{1}{2}, \quad 0 \le y \le 2$$

We use the pdf and equation  $(\ref{eq:condition})$  to find c:

$$P(Y_{\text{max}} \le c \mid H_0 \text{ is true}) = 0.10$$

$$\Rightarrow \int_0^c 8\left(\frac{y}{2}\right)^7 \cdot \frac{1}{2} dy = 0.10$$

$$\left(\frac{c}{2}\right)^8 = 0.10$$

 $\Downarrow$ 

$$c = 1.50$$

₩

149

150

We also have that

$$\beta = P(Y_{\text{max}} > 1.50 \mid \theta = 1.7)$$

$$= \int_{1.50}^{1.70} 8 \left(\frac{y}{1.7}\right)^7 \frac{1}{1.7} dy$$

$$=1-\left(\frac{1.5}{1.7}\right)^8$$

$$= 0.63$$

**Example 6.4.3** Four measurements are taken on a Poisson RV, where

$$\rho_X(k;\lambda) = e^{-\lambda} \lambda^k / k! \quad k = 0, 1, 2, \dots,$$

for testing

$$H_0: \lambda = 0.8$$
 vs.  $H_1: \lambda > 0.8$ 

Knowing that

- $\hat{\lambda} = X_1 + X_2 + X_3 + X_4$  is sufficient for  $\lambda$ ,
- $\hat{\lambda}$  is Poisson with parameter  $4\lambda$ ,
- (A) what decision rule should be used if the level of significance is to be 0.10, and
- (B) what is the power when  $\lambda = 1.2$ ?

152

151

ANSWER:

| 5            | 12           | 11            | 10                         | 9                 | ω             | 7             | 6        | ъ           | 4              | ω             | 2           | н           | 0         | k                 |
|--------------|--------------|---------------|----------------------------|-------------------|---------------|---------------|----------|-------------|----------------|---------------|-------------|-------------|-----------|-------------------|
| 0 0000341506 | 0.0000981116 | 0.000367919   | 0.00126472                 | 0.00395225        | 0.0111157     | 0.0277893     | 0.113979 | 0.060789    | 0.178093       | 0.222616      | 0.208702    | 0.130439    | 0.0407622 | $\rho_X(k)$       |
|              |              |               |                            | $\alpha = 0.1054$ |               |               |          |             |                |               |             |             |           | total probability |
|              |              | X > 6 as crit | $\alpha \approx 0.10$ . Th | correspondir      | locate the ci | we ilispect t |          | narameter 4 | probability fi | table of a Po | computer to | vve proceed |           |                   |

We proceed to use a computer to produce a table of a Poisson probability function with parameter  $4\lambda=4.8$ . Then we inspect the table and locate the critical region corresponding to  $\alpha\approx0.10$ . This gives  $X\geq6$  as critical region.

| 16           | 15          | 14          | 13          | 12         | 11         | 10                     | 9         | œ        | 7         | 6        | 5        | 4        | ω        | 2                  | н         | 0          | K                 |
|--------------|-------------|-------------|-------------|------------|------------|------------------------|-----------|----------|-----------|----------|----------|----------|----------|--------------------|-----------|------------|-------------------|
| 0.0000312339 | 0.000104113 | 0.000325353 | 0.000948948 | 0.00257007 | 0.00642517 | 0.0147243              | 0.0306757 | 0.057517 | 0.0958616 | 0.139798 | 0.174748 | 0.182029 | 0.151691 | 0.0948067          | 0.0395028 | 0.00822975 | $\rho_X(k)$       |
|              |             |             |             |            |            | $1 - \beta = 0.348982$ |           |          |           |          |          |          |          | $\beta = 0.651018$ |           |            | total probability |

If  $H_1$  is true and  $\lambda=1.2$ , then  $\sum_{\ell=1}^4 \chi_\ell$  will have a Poisson distribution with a parameter equal to 4.8. From the table shown here we get  $\beta=0.3489$ .

taken from the pdf **Example 6.4.4** A random sample of seven observations is

$$f_Y(y;\theta) = (\theta+1)y^{\theta}, \quad 0 \le y \le 1$$

to test

$$H_0: \theta = 2$$
 vs.  $H_1: \theta > 2$ 

proportion of the time would such a decision lead to a Type number of  $y_\ell$ 's that exceed 0.9, and reject  $H_0$  if  $X \ge 4$ . What As a decision rule, the experimenter plans to record X, the

with n=7 and the parameter p is given by  $\alpha = P(\text{Reject } H_0 \mid H_0 \text{ is true}). \text{ Note that } X \text{ is a binomial RV}$ ANSWER: We need to evaluate

$$\rho = P(Y \ge 0.9 \mid H_0 \text{ is true})$$

$$= P(Y \ge 0.9 \mid f_Y(y; 2) = 3y^2)$$

$$= \int_{0.9}^{1} 3y^2 dy = 0.271$$

Then,

$$\alpha = P(X \ge 4 \mid \theta = 2)$$

$$= \sum_{k=4}^{7} {7 \choose k} (0.271)^k (0.729)^{7-k} = 0.092$$

156

# Best Critical Regions and the Neyman-Pearson Lemma

### A Nonstatistical Problem:

bookshelves as much as possible. You are given  $\alpha$  dollars with which to buy books to fill up

How to do this?

of book and w=width of book. Stop when the \$  $\alpha$  run out. those for which the ration c/w is the smallest, where c = costproceed by choosing more books using the same criterion: with the lowest cost of filling an inch of bookshelf. Then First, take all available free books. Then choose the book

Consider the test

$$H_0: \theta = \theta_0$$
 and  $\theta = \theta_1$ 

pdf of  $X_1, ..., X_n$  is  $f(x,\theta)$ . In this discussion we assume f is discrete. The joint Let  $X_1, \ldots, X_n$  be a random sample of size n from a pdf

$$L = L(\theta; x_1, x_2, \dots, x_n) = P(X_1 = x_1) \cdots P(X_n = x_n)$$

probability  $\alpha$  when  $\theta = \theta_0$ . A critical region C of size  $\alpha$  is a set of points  $(x_1, \ldots, x_n)$  with

 $\theta = \theta_1$  because under  $H_1: \theta = \theta_1$  we wish to reject  $H_0: \theta = \theta_0$ . For a good test, C should have a large probability when

We start forming our set C by choosing a point  $(x_1, \ldots, x_n)$ 

157

158

with the smallest ratio

$$\frac{L(\theta_0; x_1, x_2, \dots, x_n)}{L(\theta_1; x_1, x_2, \dots, x_n)}$$

probability of C under  $H_0: \theta = \theta_0$  equals  $\alpha$ . smallest ratio. Continue in this manner to "fill C" The next point to add would be the one with the next until the

> C with the largest probability when  $H_1: \theta = \theta_1$  is true. We have just formed, for the level of significance  $\alpha$ , the set

**Definition** Consider the test

$$H_0: \theta = \theta_0$$
 and  $H_1: \theta = \theta_1$ 

of size  $\alpha = P(D; \theta_0)$  we have that Let C be a critical region of size  $\alpha$ . We say that C is a critical region of size  $\alpha$  if for any other critical region D

$$P(C; \theta_1) \ge P(D; \theta_1)$$

probability using any other critical region D.  $H_0: \theta = \theta_0$  using C is at least as great as the corresponding That is, when  $\mathcal{H}_1$  :  $heta= heta_1$  is true, the probability of rejecting

greatest power among all critical regions of size lphaAnother perspective: a best critical region of size  $\alpha$  has the

### The Neyman-Pearson Lemma

Let  $X_1, \ldots, X_n$  be a random sample of size n from a pdf  $f(x,\theta)$ , with  $\theta_0$  and  $\theta_1$  being two possible values of  $\theta$ . Let the joint pdf of  $X_1, \ldots, X_n$  be

$$L(\theta) = L(\theta; x_1, x_2, \dots, x_n) = f(x_1, \theta) \cdots f(x_n, \theta)$$

IF there exist a positive constant k and a subset C of the sample space such that

[a] 
$$P[(x_1,\ldots,x_n)\in C ; \theta_0]=\alpha$$

**[b]** 
$$\frac{L(\theta_0)}{L(\theta_1)} \le k$$
 for  $(x_1, \dots, x_n) \in C$ .

[c] 
$$\frac{L(\theta_0)}{L(\theta_1)} \ge k$$
 for  $(x_1, \dots, x_n) \in C^c$ .

THEN C is a best critical region of size  $\alpha$  for testing  $H_0$ :  $\theta=\theta_0$  versus  $H_1$ :  $\theta=\theta_1$ .

161

This may be written in terms of  $\overline{X}$  as

$$\frac{1}{16} \sum_{\ell=1}^{16} \varkappa_{\ell} \ge \frac{1}{160} [-8500 + 72 \cdot \ln k] =: c$$

That is,

$$\frac{L(50)}{L(55)} \le k \quad \iff \quad \overline{x} \ge c$$

163

When  $\mathcal{H}_1$  is a composite hypothesis (defined by inequalities), the power of a test depends on each simple alternative hypothesis.

**Definition** A test, defined by a critical region C of size  $\alpha$  is a uniformly most powerful test if it is a most powerful test against each simple alternative in  $H_1$ . The critical region C is called a uniformly most powerful critical region of size  $\alpha$ 

**Example** Let  $X_1, ..., X_{16}$  be a random sample from a normal distribution with  $\sigma = 36$ .

Find the best critical region with  $\alpha=0.05$  for testing  $H_0:\mu=50$  versus  $H_1:\mu>50$ .

**Example** Let  $X_1, ..., X_{16}$  be a random sample from a normal distribution with  $\sigma = 36$ .

Find the best critical region with  $\alpha=0.023$  for testing  $H_0: \mu=50$  versus  $H_1: \mu=55$ .

ANSWER: Skipping some details, we have

$$\frac{L(50)}{L(55)} = exp\left[-\frac{1}{72}\left(10\sum_{\ell=1}^{16}x_{\ell} + 8500\right)\right] \le k$$

Ther

$$-10\sum_{\ell=1}^{16} x_{\ell} + 8500 \le 72 \cdot \ln k$$

162

A best critical region, according to Neyman-Pearson Lemma, is

$$C = \{(x_1, \ldots, x_n) : \overline{x} \ge c\}$$

This set has probability  $\alpha=0.023$  given  $H_0: \mu=50$ . Then,

$$0.023 = P(\overline{X} \ge c; \mu = 50) = P(Z \ge \frac{c - 50}{6/4})$$

Since, from the table,  $z_{\alpha} = 2.00$ , we have

$$\frac{c - 50}{6/4} = 2$$

That is, c = 53.0. The best critical region is:

$$C = \{(x_1, \dots, x_n) : \overline{x} \ge 53.0\}$$

ANSWER: For each simple hypothesis in  $H_1$ , say  $\mu=\mu_1$ , we have,

$$\frac{L(50)}{L(\mu_1)} = \exp\left[-\frac{1}{72}\left(2(\mu_1 - 50)\sum_{\ell=1}^{16} x_\ell + 16(50^2 - \mu_1^2)\right)\right] \le k$$

Then

$$2(\mu_1 - 50) \sum_{\ell=1}^{16} \varkappa_\ell + 16(50^2 - \mu_1^2) \le 72 \cdot \ln k$$

This may be written in terms of  $\overline{X}$  as

$$\frac{1}{16} \sum_{\ell=1}^{16} \varkappa_{\ell} \ge \frac{-72 \cdot \ln k}{32(\mu_1 - 50)} + \frac{50 + \mu_1}{2} =: c$$

hat is,

$$\frac{L(50)}{L(\mu_1)} \le k \qquad \Longleftrightarrow \qquad \overline{x} \ge c$$

A best critical region, according to Neyman-Pearson

165

Lemma, is

$$C = \{(x_1, \ldots, x_n) : \overline{x} \ge c\}$$

This set has probability  $\alpha = 0.05$  given  $H_0: \mu = 50$ . Then,

$$0.05 = P(\overline{X} \ge c; \mu = 50) = P(Z \ge \frac{c - 50}{6/4})$$

Since, from the table,  $z_{0.05} = 1.64$ , we have

$$\frac{c - 50}{6/4} = 1.64$$

region is: That is, c = 52.46. A best uniformly most powerful critical

$$C = \{(x_1, \ldots, x_n) : \overline{x} \ge 52.46\}$$

changes is the value of k). Note that c=52.46 is good for all values of  $\mu_1>50$  (what

167

each  $p_1$  with  $p_0 < p_1$ , Since  $p_0 < p_1$  and  $p_0(1-p_1) < p_1(1-p_0)$ , we have that for

$$\frac{x}{n} \ge \frac{\ln k - n \ln \left(\frac{1 - p_0}{1 - p_1}\right)}{n \ln \left(\frac{1 - p_0}{1 - p_1}\right)} =: c$$

#### CONCLUSION:

A uniformly most powerful test of  $H_0: p = p_0$  against

 $H_1: \rho >_0$  is of the form  $y/n \ge c$ 

 $H_0: p = p_0$  against the one sided alternative  $H_1: p > p_0$ . uniformly most powerful test of the null hypothesis trials each with probability p of success. Given  $\alpha$ , find a **Example** Let X have a binomial distribution resulting from n

 $p_1 > p_0$ , consider the ratio ANSWER: For  $ho_1$  arbitrary except for the requirement

$$\frac{L(\rho_0)}{L(\rho_1)} = \frac{\binom{n}{x} \rho_0^x (1 - \rho_0^{n-x})}{\binom{n}{x} \rho_1^x (1 - \rho_1^{n-x})} \le k$$

This is equivalent to

$$\left(\frac{\rho_0(1-\rho_1)}{\rho_1(1-\rho_0)}\right)^{\times}\left(\frac{1-\rho_0}{1-\rho_1}\right)^n \leq k$$

#### An Observation

If a sufficient statistic  $Y = h(X_1, X_2, ..., X_n)$  exists for  $\theta$ , then, by the factorization theorem,

$$\frac{L(\theta_0)}{L(\theta_1)} = \frac{g(\hat{\theta}, \theta_0) \cdot u(x_1, \dots, x_n)}{g(\hat{\theta}, \theta_1) \cdot u(x_1, \dots, x_n)} = \frac{g(\hat{\theta}, \theta_0)}{g(\hat{\theta}, \theta_1)}$$

That is, in this case the inequality

$$\frac{L(\theta_0)}{L(\theta_1)} \le k$$

only through the sufficient statistic  $\hat{ heta}$ . provides a critical region that depends on the data  $x_1, \ldots, x_n$ 

based upon sufficient statistics when they exist! best critical and uniformly most powerful critical regions are

169