6.4: Type I and Type II errors

Type I error: Reject H_0 when H_0 is true

Type II error: Accept H_0 when H_0 is false

The probability of committing a Type I Error is called the test’s **Level of Significance**

<table>
<thead>
<tr>
<th></th>
<th>H_0 is True</th>
<th>H_0 is False</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accept H_0</td>
<td>Correct Decision</td>
<td>Type II Error</td>
</tr>
<tr>
<td>Reject H_0</td>
<td>Type I error</td>
<td>Correct decision</td>
</tr>
</tbody>
</table>
Recall Fuel Efficiency Example from 6.2

\[H_0 : \mu = 25.0 \quad \text{Additive is not effective.} \]

\[H_1 : \mu > 25.0 \quad \text{Additive is effective.} \]

With \(y^* = 25.718 \) as critical value we have,

\[
P(\text{Type I Error})
\]

\[
= P(\text{reject } H_0 \mid H_0 \text{ is true})
\]

\[
= P(\overline{Y} \geq 25.718 \mid \mu = 25.0)
\]

\[
= P \left(\frac{\overline{Y} - 25.0}{2.4/\sqrt{30}} \geq \frac{25.718 - 25.0}{2.4/\sqrt{30}} \right)
\]

\[
= P(Z \geq 1.64)
\]

\[
= 0.05
\]
If H_0 is false, we may investigate the probability of accepting H_0, given any fixed value of the true μ (with the additive). For example,

\[
P(\text{Type II Error} \mid \mu = 25.750)
\]

\[
= P(\overline{Y} < 25.718 \mid \mu = 25.750)
\]

\[
= P \left(\frac{\overline{Y} - 25.750}{2.4/\sqrt{30}} < \frac{25.718 - 25.750}{2.4/\sqrt{30}} \right)
\]

\[
= P(Z < -0.07)
\]

\[
= 0.4721
\]
Figure 6.4.2

Sampling distribution of \bar{Y} when H_0 is true

$\beta = 0.4721$

Sampling distribution of \bar{Y} when $\mu = 25.75$

$\alpha = 0.05$

Accept H_0 ←→ Reject H_0

25.718
\(\beta \) is a function of presumed value of \(\mu \)

If in previous example, the gasoline additive is so effective to raise the fuel efficiency to 26.8 mpg, then

\[
P(\text{Type II Error} \mid \mu = 26.8)
= P(\text{accept } H_0 \mid \mu = 26.8)
= P(\bar{Y} < 25.718 \mid \mu = 26.8)
= P \left(\frac{\bar{Y} - 26.8}{2.4/\sqrt{30}} < \frac{25.718 - 26.8}{2.4/\sqrt{30}} \right)
= P(Z < -2.47) = 0.0068
\]
Figure 6.4.3

Sampling distribution of \bar{Y} when H_0 is true

$\beta = 0.0068$

Sampling distribution of \bar{Y} when $\mu = 26.8$

$\alpha = 0.05$

Accept H_0 \rightarrow Reject H_0

25.718

FIGURE 6.4.3
Power := \(1 - \beta = P(\text{Reject } H_0 \mid H_1 \text{ is true})\)

Power Curve: Power vs. \(\mu\) values

\[
\begin{align*}
\text{Power} &= 0.72 \\
\text{Power} &= 0.29
\end{align*}
\]
Power curves tell you about the performance of a test. Power curves are useful for comparing different tests. **Comparing Power Curves: steep is good** Figure 6.4.5
The effect of α on $1 - \beta$: Fig. 6.4.6
Increasing α decreases β and increases the power

But this is not something we normally want to do

(reason: $\alpha = \text{Probability of Type I Error}$)

The effect of σ and n on $1 - \beta$. is illustrated in the next figure.
When $\sigma = 2.4$

When $\sigma = 1.2$
Increasing the Sample Size Example 6.4.1 We wish to test

\[H_0 : \mu = 100 \quad \text{vs.} \quad H_1 : \mu > 100 \]

at the \(\alpha = 0.05 \) significance level and require \(1 - \beta \) to equal 0.60 when \(\mu = 103 \).

What is the smallest sample size that achieves the objective? Assume normal distribution with \(\sigma = 14 \).

ANSWER:
Observe that both \(\alpha \) and \(\beta \) are given.
To find \(n \) we follow the strategy of writing two equations for the critical value \(y^* \): one in terms of \(H_0 \) distribution (where we use \(\alpha \)), and one in terms of \(H_1 \) distribution (where \(\beta \) is used). Solving simultaneously will give the needed \(n \).
If $\alpha = 0.05$, we have,

$$
\alpha = P(\text{reject } H_0 \mid H_0 \text{ is true})
$$

$$
= P(\bar{Y} \geq y^* \mid \mu = 100)
$$

$$
= P \left(\frac{\bar{Y} - 100}{14/\sqrt{n}} \geq \frac{y^* - 100}{14/\sqrt{n}} \right)
$$

$$
= P(Z \geq \frac{y^* - 100}{14/\sqrt{n}}) = 0.05
$$

Since $P(z \geq 1.64) = 0.05$, we have

$$
\frac{y^* - 100}{14/\sqrt{n}} = 1.64
$$

Solving for y^* we get $y^* = 100 + 1.64 \cdot \frac{14}{\sqrt{n}}$
Similarly,

\[1 - \beta = P(\text{reject } H_0 | H_1 \text{ is true}) \]

\[= P(\bar{Y} \geq y^* | \mu = 103) \]

\[= P \left(\frac{\bar{Y} - 103}{14/\sqrt{n}} \geq \frac{y^* - 103}{14/\sqrt{n}} \right) \]

\[= P(Z \geq \frac{y^* - 103}{14/\sqrt{n}}) \]

\[= 0.60 \]

Since \(P(Z \geq -0.25) = 0.5987 \approx 0.60, \)

\[\frac{y^* - 103}{14/\sqrt{n}} = -0.25 \quad \Rightarrow \quad y^* = 103 - 0.25 \cdot \frac{14}{\sqrt{n}} \]
Finally, putting together the two eqns for y^* we have

$$100 + 1.64 \cdot \frac{14}{\sqrt{n}} = 103 - 0.25 \cdot \frac{14}{\sqrt{n}}$$

which gives $n = 78$ as the minimum number of observations to be taken to guarantee the desired precision.
6.4 (Cont.) Decision for Non-Normal Data

We assume the following is GIVEN:

- a set of data
- a pdf $f(y; \theta)$
- $\theta = \text{unknown parameter}$
- $\theta_0 = \text{given value (associated with } H_0)$
- $\hat{\theta} = \text{a sufficient estimator for } \theta$

A one (right) sided test is

$$H_0 : \theta = \theta_0 \quad \text{vs.} \quad H_1 : \theta > \theta_0$$

Similarly we may consider left-sided tests or two sided tests.
Example 6.4.2 A random sample of size 8 is drawn from the uniform pdf

\[f(y, \theta) = \frac{1}{\theta}, \quad 0 \leq y \leq \theta \]

for the purpose of testing

\[H_0 : \theta = 2.0 \quad \text{vs.} \quad H_1 : \theta < 2.0 \]

at the \(\alpha = 0.10 \) level of significance. The decision ruled is based on \(\hat{\theta} = Y_{\text{max}} \), the largest order statistic. What is the probability of a Type II error when \(\theta = 1.7 \)?

ANSWER: We set \(P(Y_{\text{max}} \leq c \mid H_0 \text{ is true }) = 0.10 \), and the decision rule is “Reject \(H_0 \) if \(Y_{\text{max}} \leq c \)”
The pdf of Y_{max} given that H_0 is true is

$$f_{Y_{\text{max}}}(y; \theta = 2) = 8 \left(\frac{y}{2} \right)^7 \cdot \frac{1}{2}, \quad 0 \leq y \leq 2$$

We use the pdf and equation (??) to find c:

$$P(Y_{\text{max}} \leq c \mid H_0 \text{ is true}) = 0.10$$

$$\Rightarrow \quad \int_0^c 8 \left(\frac{y}{2} \right)^7 \cdot \frac{1}{2} dy = 0.10$$

$$\Rightarrow \quad \left(\frac{c}{2} \right)^8 = 0.10$$

$$\Rightarrow \quad c = 1.50$$
We also have that

\[\beta = P(Y_{\text{max}} > 1.50 \mid \theta = 1.7) \]

\[= \int_{1.50}^{1.70} 8 \left(\frac{y}{1.7} \right)^7 \frac{1}{1.7} dy \]

\[= 1 - \left(\frac{1.5}{1.7} \right)^8 \]

\[= 0.63 \]
pdf of Y_8' when $H_1: \theta = 1.7$ is true

$1 - \beta = 0.63$

pdf of Y_8' when $H_0: \theta = 2.0$ is true

$\alpha = 0.10$

Reject H_0
Example 6.4.3 Four measurements are taken on a Poisson RV, where

\[p_X(k; \lambda) = \frac{e^{-\lambda} \lambda^k}{k!} \quad k = 0, 1, 2, \ldots, \]

for testing

\[H_0 : \lambda = 0.8 \quad \text{vs.} \quad H_1 : \lambda > 0.8 \]

Knowing that

- \(\hat{\lambda} = X_1 + X_2 + X_3 + X_4 \) is sufficient for \(\lambda \),
- \(\hat{\lambda} \) is Poisson with parameter \(4\lambda \),

(A) what decision rule should be used if the level of significance is to be 0.10, and

(B) what is the power when \(\lambda = 1.2 \)?
We proceed to use a computer to produce a table of a Poisson probability function with parameter $4\lambda = 4.8$. Then we inspect the table and locate the critical region corresponding to $\alpha \approx 0.10$. This gives $X \geq 6$ as critical region.

<table>
<thead>
<tr>
<th>k</th>
<th>$p_X(k)$</th>
<th>total probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.0407622</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>0.130439</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0.208702</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.222616</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.178093</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0.060789</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0.113979</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.0277893</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>0.0111157</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0.00395225</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.00126472</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.000367919</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.000098116</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0.0000241506</td>
<td></td>
</tr>
</tbody>
</table>

\[\alpha = 0.1054 \]
If \(H_1 \) is true and \(\lambda = 1.2 \), then \(\sum_{\ell=1}^{4} X_\ell \) will have a Poisson distribution with a parameter equal to 4.8. From the table shown here we get \(\beta = 0.3489 \).
Example 6.4.4 A random sample of seven observations is taken from the pdf

\[f_Y(y; \theta) = (\theta + 1)y^\theta, \quad 0 \leq y \leq 1 \]

to test

\[H_0 : \theta = 2 \quad \text{vs.} \quad H_1 : \theta > 2 \]

As a decision rule, the experimenter plans to record \(X \), the number of \(y \)'s that exceed 0.9, and reject \(H_0 \) if \(X \geq 4 \). What proportion of the time would such a decision lead to a Type I error?
ANSWER: We need to evaluate \(\alpha = P(\text{Reject } H_0 \mid H_0 \text{ is true}) \). Note that \(X \) is a binomial RV with \(n = 7 \) and the parameter \(p \) is given by

\[
p = P(Y \geq 0.9 \mid H_0 \text{ is true})
\]

\[
= P(Y \geq 0.9 \mid f_Y(y; 2) = 3y^2)
\]

\[
= \int_{0.9}^{1} 3y^2 \, dy = 0.271
\]

Then,

\[
\alpha = P(X \geq 4 \mid \theta = 2)
\]

\[
= \sum_{k=4}^{7} \binom{7}{k} (0.271)^k (0.729)^{7-k} = 0.092
\]
Best Critical Regions and the Neyman-Pearson Lemma

A Nonstatistical Problem:
You are given α dollars with which to buy books to fill up bookshelves as much as possible.

How to do this?

A strategy:
First, take all available free books. Then choose the book with the lowest cost of filling an inch of bookshelf. Then proceed by choosing more books using the same criterion: those for which the ration c/w is the smallest, where $c=$ cost of book and $w=$width of book. Stop when the α run out.
Consider the test

\[H_0 : \theta = \theta_0 \quad \text{and} \quad \theta = \theta_1 \]

Let \(X_1, \ldots, X_n \) be a random sample of size \(n \) from a pdf \(f(x, \theta) \). In this discussion we assume \(f \) is discrete. The joint pdf of \(X_1, \ldots, X_n \) is

\[L = L(\theta; x_1, x_2, \ldots, x_n) = P(X_1 = x_1) \cdots P(X_n = x_n) \]

A critical region \(C \) of size \(\alpha \) is a set of points \((x_1, \ldots, x_n)\) with probability \(\alpha \) when \(\theta = \theta_0 \).

For a good test, \(C \) should have a large probability when \(\theta = \theta_1 \) because under \(H_1 : \theta = \theta_1 \) we wish to reject \(H_0 : \theta = \theta_0 \).

We start forming our set \(C \) by choosing a point \((x_1, \ldots, x_n)\)
with the smallest ratio

\[
\frac{L(\theta_0; x_1, x_2, \ldots, x_n)}{L(\theta_1; x_1, x_2, \ldots, x_n)}
\]

The next point to add would be the one with the next smallest ratio. Continue in this manner to “fill C” until the probability of C under $H_0: \theta = \theta_0$ equals α.
We have just formed, for the level of significance α, the set C with the largest probability when $H_1 : \theta = \theta_1$ is true.

Definition Consider the test

$$H_0 : \theta = \theta_0 \quad \text{and} \quad H_1 : \theta = \theta_1$$

Let C be a critical region of size α. We say that C is a **best critical region of size α** if for any other critical region D of size $\alpha = P(D; \theta_0)$ we have that

$$P(C; \theta_1) \geq P(D; \theta_1)$$

That is, when $H_1 : \theta = \theta_1$ is true, the probability of rejecting $H_0 : \theta = \theta_0$ using C is at least as great as the corresponding probability using any other critical region D.

Another perspective: a best critical region of size α has the greatest power among all critical regions of size α.
The Neyman-Pearson Lemma

Let \(X_1, \ldots, X_n \) be a random sample of size \(n \) from a pdf \(f(x, \theta) \), with \(\theta_0 \) and \(\theta_1 \) being two possible values of \(\theta \).

Let the joint pdf of \(X_1, \ldots, X_n \) be

\[
L(\theta) = L(\theta; x_1, x_2, \ldots, x_n) = f(x_1, \theta) \cdots f(x_n, \theta)
\]

IF there exist a positive constant \(k \) and a subset \(C \) of the sample space such that

[a] \(P[(x_1, \ldots, X_n) \in C ; \ \theta_0] = \alpha \)

[b] \(\frac{L(\theta_0)}{L(\theta_1)} \leq k \) for \((x_1, \ldots, x_n) \in C \).

[c] \(\frac{L(\theta_0)}{L(\theta_1)} \geq k \) for \((x_1, \ldots, x_n) \in C^c \).

THEN \(C \) is a best critical region of size \(\alpha \) for testing

\(H_0 : \ \theta = \theta_0 \) versus \(H_1 : \ \theta = \theta_1 \).
Example Let X_1, \ldots, X_{16} be a random sample from a normal distribution with $\sigma = 36$.
Find the best critical region with $\alpha = 0.023$ for testing $H_0 : \mu = 50$ versus $H_1 : \mu = 55$.

ANSWER: Skipping some details, we have,

$$\frac{L(50)}{L(55)} = \exp \left[-\frac{1}{72} \left(10 \sum_{\ell=1}^{16} x_\ell + 8500 \right) \right] \leq k$$

Then

$$-10 \sum_{\ell=1}^{16} x_\ell + 8500 \leq 72 \cdot \ln k$$
This may be written in terms of \bar{X} as

$$
\frac{1}{16} \sum_{\ell=1}^{16} x_\ell \geq \frac{1}{160}[-8500 + 72 \cdot \ln k] =: c
$$

That is,

$$
\frac{L(50)}{L(55)} \leq k \iff \bar{x} \geq c
$$
A best critical region, according to Neyman-Pearson Lemma, is

\[C = \{(x_1, \ldots, x_n) : \bar{x} \geq c\} \]

This set has probability \(\alpha = 0.023 \) given \(H_0 : \mu = 50 \). Then,

\[0.023 = P(\bar{X} \geq c; \mu = 50) = P(Z \geq \frac{c - 50}{6/4}) \]

Since, from the table, \(z_\alpha = 2.00 \), we have

\[\frac{c - 50}{6/4} = 2 \]

That is, \(c = 53.0 \). The best critical region is:

\[C = \{(x_1, \ldots, x_n) : \bar{x} \geq 53.0\} \]
When H_1 is a composite hypothesis (defined by inequalities), the power of a test depends on each simple alternative hypothesis.

Definition A test, defined by a critical region C of size α is a *uniformly most powerful test* if it is a most powerful test against each simple alternative in H_1. The critical region C is called a *uniformly most powerful critical region of size α*

Example Let X_1, \ldots, X_{16} be a random sample from a normal distribution with $\sigma = 36$.
Find the best critical region with $\alpha = 0.05$ for testing $H_0 : \mu = 50$ versus $H_1 : \mu > 50$.
ANSWER: For each simple hypothesis in H_1, say $\mu = \mu_1$, we have,

$$\frac{L(50)}{L(\mu_1)} = \exp \left[-\frac{1}{72} \left(2(\mu_1 - 50) \sum_{\ell=1}^{16} x_\ell + 16(50^2 - \mu_1^2) \right) \right] \leq k$$

Then

$$2(\mu_1 - 50) \sum_{\ell=1}^{16} x_\ell + 16(50^2 - \mu_1^2) \leq 72 \cdot \ln k$$

This may be written in terms of \overline{X} as

$$\frac{1}{16} \sum_{\ell=1}^{16} x_\ell \geq \frac{-72 \cdot \ln k}{32(\mu_1 - 50)} + \frac{50 + \mu_1}{2} =: c$$

That is,

$$\frac{L(50)}{L(\mu_1)} \leq k \iff \overline{X} \geq c$$

A best critical region, according to Neyman-Pearson
Lemma, is

\[C = \{ (x_1, \ldots, x_n) : \bar{x} \geq c \} \]

This set has probability \(\alpha = 0.05 \) given \(H_0 : \mu = 50 \). Then,

\[0.05 = P(\bar{X} \geq c; \mu = 50) = P(Z \geq \frac{c - 50}{6/4}) \]

Since, from the table, \(z_{0.05} = 1.64 \), we have

\[\frac{c - 50}{6/4} = 1.64 \]

That is, \(c = 52.46 \). A best uniformly most powerful critical region is:

\[C = \{ (x_1, \ldots, x_n) : \bar{x} \geq 52.46 \} \]

Note that \(c = 52.46 \) is good for all values of \(\mu_1 > 50 \) (what changes is the value of \(k \)).
Example Let X have a binomial distribution resulting from n trials each with probability p of success. Given α, find a uniformly most powerful test of the null hypothesis $H_0: p = p_0$ against the one sided alternative $H_1: p > p_0$.

ANSWER: For p_1 arbitrary except for the requirement $p_1 > p_0$, consider the ratio

$$
\frac{L(p_0)}{L(p_1)} = \frac{\binom{n}{x} p_0^x (1 - p_0^{n-x})}{\binom{n}{x} p_1^x (1 - p_1^{n-x})} \leq k
$$

This is equivalent to

$$
\left(\frac{p_0(1 - p_1)}{p_1(1 - p_0)} \right)^x \left(\frac{1 - p_0}{1 - p_1} \right)^n \leq k
$$
and
\[x \ln \left(\frac{p_0(1 - p_1)}{p_1(1 - p_0)} \right) \leq \ln k - n \ln \left(\frac{1 - p_0}{1 - p_1} \right) \]

Since \(p_0 < p_1 \) and \(p_0(1 - p_1) < p_1(1 - p_0) \), we have that for each \(p_1 \) with \(p_0 < p_1 \),

\[\frac{x}{n} \geq \frac{\ln k - n \ln \left(\frac{1 - p_0}{1 - p_1} \right)}{n \ln \left(\frac{1 - p_0}{1 - p_1} \right)} =: c \]

CONCLUSION:

A uniformly most powerful test of \(H_0 : p = p_0 \) against \(H_1 : p > 0 \) is of the form \(y/n \geq c \)
An Observation

If a sufficient statistic \(Y = h(X_1, X_2, \ldots, X_n) \) exists for \(\theta \), then, by the factorization theorem,

\[
\frac{L(\theta_0)}{L(\theta_1)} = \frac{g(\hat{\theta}, \theta_0) \cdot u(x_1, \ldots, x_n)}{g(\hat{\theta}, \theta_1) \cdot u(x_1, \ldots, x_n)} = \frac{g(\hat{\theta}, \theta_0)}{g(\hat{\theta}, \theta_1)}
\]

That is, in this case the inequality

\[
\frac{L(\theta_0)}{L(\theta_1)} \leq k
\]

provides a critical region that depends on the data \(x_1, \ldots, x_n \) only through the sufficient statistic \(\hat{\theta} \).

THEN,

best critical and uniformly most powerful critical regions are based upon sufficient statistics when they exist!