
6.4: Type I and Type II errors

Type I error : Reject H0 when H0 is true

Type II error : Accept H0 when H0 is false

The probability of committing a Type I Error is called the

test’s Level of Significance

H0 is True H0 is False

Accept H0 Correct Decision Type II Error

Reject H0 Type I error Correct decision
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Recall Fuel Efficiency Example from 6.2

H0 : � = 25:0 Additive is not effective.

H1 : � > 25:0 Additive is effective.

With y� = 25:718 as critical value we have,

P (Type I Error)

= P ( reject H0 j H0 is true )

= P (Y � 25:718 j � = 25:0)

= P
(

Y�25:0
2:4=

p
30

� 25:718�25:0
2:4=

p
30

)
= P (Z � 1:64)

= 0:05
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If H0 is false, we may investigate the probability of accepting

H0, given any fixed value of the true � (with the additive).

For example,

P (Type II Error j � = 25:750)

= P (Y < 25:718 j � = 25:750)

= P
(
Y�25:750
2:4=

p
30

< 25:718�25:750
2:4=

p
30

)

= P (Z < �0:07)

= 0:4721
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Figure 6.4.2
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� is a function of presumed value of �

If in previous example, the gasoline additive is so effective to

raise the fuel efficiency to 26.8 mpg, then

P (Type II Error j � = 26:8)

= P ( accept H0 j � = 26:8)

= P (Y < 25:718 j � = 26:8)

= P
(

Y�26:8
2:4=

p
30

< 25:718�26:8
2:4=

p
30

)

= P (Z < �2:47) = 0:0068
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Figure 6.4.3
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Power := 1� � = P( Reject H0 j H1 is true)

Power Curve: Power vs. � values
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Power curves tell you about the performance of a test.

Power curves are useful for comparing different tests.

Comparing Power Curves: steep is good Figure 6.4.5
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The effect of � on 1� �: Fig. 6.4.6
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Increasing � decreases � and increases the power

But this is not something we normally want to do

(reason: � = Probability of Type I Error)

The effect of � and n on 1� �. is illustrated in the next

figure.
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Increasing the Sample Size Example 6.4.1 We wish to

test

H0 : � = 100 vs.H1 : � > 100

at the � = 0:05 significance level and require 1� � to equal

0.60 when � = 103.

What is the smallest sample size that achieves the objective?

Assume normal distribution with � = 14.

ANSWER:

Observe that both � and � are given.

To find n we follow the strategy of writing two equations for

the critical value y�: one in terms of H0 distribution (where

we use �), and one in terms of H1 distribution (where � is

used). Solving simultaneously will give the needed n.
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If � = 0:05, we have,

� = P ( reject H0 j H0 is true )

= P (Y � y� j � = 100)

= P
(
Y�100
14=

p
n

� y��100
14=

p
n

)

= P (Z � y��100
14=

p
n
) = 0:05

Since P (z � 1:64) = 0:05, we have

y� � 100

14=
p
n

= 1:64

Solving for y� we get y� = 100 + 1:64 � 14p
n
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Similarly,

1� � = P (reject H0jH1 is true)

= P (Y � y� j � = 103)

= P
(
Y�103
14=

p
n

� y��103
14=

p
n

)

= P (Z � y��103
14=

p
n
)

= 0:60

Since P (Z � �0:25) = 0:5987 � 0:60,

y� � 103

14=
p
n

= �0:25 ) y� = 103� 0:25 � 14p
n
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Finally, putting together the two eqns for y� we have

100 + 1:64 � 14p
n
= 103� 0:25 � 14p

n

which gives n = 78 as the minimum number of observations

to be taken to guarantee the desired precision.
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6.4 (Cont.) Decision for Non-Normal Data

We assume the following is GIVEN:

� a set of data

� a pdf f (y ; �)

� � = unknown parameter

� �0 = given value (associated with H0)

� �̂ = a sufficient estimator for �

A one (right) sided test is

H0 : � = �0 vs. H1 : � > �0

Similarly we may consider left-sided tests or two sided tests.
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Example 6.4.2 A random sample of size 8 is drawn fromthe

uniform pdf

f (y; �) =
1

�
; 0 � y � �

for the purpose of testing

H0 : � = 2:0 vs. H1 : � < 2:0

at the � = 0:10 level of significance. The decision ruled is

based on �̂ = Ymax, the largest order statistic. What is the

probability of a Type II error when � = 1:7?

ANSWER: We set P (Ymax � c j H0 is true ) = 0:10,

and the decision rule is “Reject H0 if Ymax � c”
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The pdf of Ymax given that H0 is true is

fYmax(y ; � = 2) = 8
(y
2

)7
� 1
2
; 0 � y � 2

We use the pdf and equation (??) to find c:

P (Ymax � c j H0 is true ) = 0:10

)
∫ c

0
8
(y
2

)7
� 1
2
dy = 0:10

) (
c
2

)8
= 0:10

) c = 1:50
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We also have that

� = P (Ymax > 1:50 j � = 1:7 )

=

∫ 1:70

1:50
8
( y

1:7

)7 1

1:7
dy

= 1� (1:5
1:7

)8
= 0:63
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Example 6.4.3 Four measurements are taken on a Poisson

RV, where

pX(k;�) = e���k=k! k = 0; 1; 2; : : : ;

for testing

H0 : � = 0:8 vs. H1 : � > 0:8

Knowing that

� �̂ = X1 + X2 + X3 + X4 is sufficient for �,

� �̂ is Poisson with parameter 4�,

(A) what decision rule should be used if the level of

significance is to be 0.10, and

(B) what is the power when � = 1:2?
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ANSWER:

k pX(k) total probability

0 0.0407622

1 0.130439

2 0.208702

3 0.222616

4 0.178093

5 0.060789

6 0.113979

7 0.0277893

8 0.0111157

9 0.00395225 � = 0:1054

10 0.00126472

11 0.000367919

12 0.0000981116

13 0.0000241506

We proceed to use a

computer to produce a

table of a Poisson

probability function with

parameter 4� = 4:8. Then

we inspect the table and

locate the critical region

corresponding to

� � 0:10. This gives

X � 6 as critical region.
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k pX(k) total probability

0 0.00822975

1 0.0395028

2 0.0948067 � = 0:651018

3 0.151691

4 0.182029

5 0.174748

6 0.139798

7 0.0958616

8 0.057517

9 0.0306757

10 0.0147243 1� � = 0:348982

11 0.00642517

12 0.00257007

13 0.000948948

14 0.000325353

15 0.000104113

16 0.0000312339

If H1 is true and � = 1:2,

then
∑4

`=1X` will have a

Poisson distribution with

a parameter equal to 4.8.

From the table shown

here we get � = 0:3489.
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Example 6.4.4 A random sample of seven observations is

taken from the pdf

fY (y ; �) = (� + 1)y �; 0 � y � 1

to test

H0 : � = 2 vs. H1 : � > 2

As a decision rule, the experimenter plans to record X, the

number of y`’s that exceed 0.9, and reject H0 if X � 4. What

proportion of the time would such a decision lead to a Type

I error?
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ANSWER: We need to evaluate

� = P (Reject H0 j H0 is true). Note that X is a binomial RV

with n = 7 and the parameter p is given by

p = P (Y � 0:9 j H0 is true )

= P (Y � 0:9 j fY (y ; 2) = 3y2)

=
∫ 1
0:9 3y

2dy = 0:271

Then,

� = P (X � 4 j � = 2)

=
∑7

k=4

(7
k

)
(0:271)k(0:729)7�k = 0:092
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Best Critical Regions and the Neyman-Pearson Lemma

A Nonstatistical Problem:

You are given � dollars with which to buy books to fill up

bookshelves as much as possible.

How to do this?

A strategy:

First, take all available free books. Then choose the book

with the lowest cost of filling an inch of bookshelf. Then

proceed by choosing more books using the same criterion:

those for which the ration c=w is the smallest, where c= cost

of book and w=width of book. Stop when the $ � run out.
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Consider the test

H0 : � = �0 and � = �1

Let X1; : : : ; Xn be a random sample of size n from a pdf

f (x; �). In this discussion we assume f is discrete. The joint

pdf of X1; : : : ; Xn is

L = L(�; x1; x2; : : : ; xn) = P (X1 = x1) � � �P (Xn = xn)

A critical region C of size � is a set of points (x1; : : : ; xn) with

probability � when � = �0.

For a good test, C should have a large probability when

� = �1 because under H1 : � = �1 we wish to reject H0 : � = �0.

We start forming our set C by choosing a point (x1; : : : ; xn)
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with the smallest ratio

L(�0; x1; x2; : : : ; xn)

L(�1; x1; x2; : : : ; xn)

The next point to add would be the one with the next

smallest ratio. Continue in this manner to “fill C” until the

probability of C under H0 : � = �0 equals �.
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We have just formed, for the level of significance �, the set

C with the largest probability when H1 : � = �1 is true.

Definition Consider the test

H0 : � = �0 and H1 : � = �1

Let C be a critical region of size �. We say that C is a

best critical region of size � if for any other critical region D

of size � = P (D; �0) we have that

P (C; �1) � P (D; �1)

That is, when H1 : � = �1 is true, the probability of rejecting

H0 : � = �0 using C is at least as great as the corresponding

probability using any other critical region D.

Another perspective: a best critical region of size � has the

greatest power among all critical regions of size �.
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The Neyman-Pearson Lemma

Let X1; : : : ; Xn be a random sample of size n from a pdf

f (x; �), with �0 and �1 being two possible values of �.

Let the joint pdf of X1; : : : ; Xn be

L(�) = L(�; x1; x2; : : : ; xn) = f (x1; �) � � � f (xn; �)

IF there exist a positive constant k and a subset C of the

sample space such that

[a] P [(x1; : : : ; Xn) 2 C ; �0] = �

[b] L(�0)
L(�1)

� k for (x1; : : : ; xn) 2 C.

[c] L(�0)
L(�1)

� k for (x1; : : : ; xn) 2 Cc .

THEN C is a best critical region of size � for testing

H0 : � = �0 versus H1 : � = �1.
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Example Let X1; : : : ; X16 be a random sampe from a normal

distribution with � = 36.

Find the best critical region with � = 0:023 for testing

H0 : � = 50 versus H1 : � = 55.

ANSWER: Skipping some details, we have,

L(50)

L(55)
= exp

[
� 1

72

(
10

16∑
`=1

x` + 8500

)]
� k

Then

�10
16∑
`=1

x` + 8500 � 72 � ln k
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This may be written in terms of X as

1

16

16∑
`=1

x` �
1

160
[�8500 + 72 � ln k] =: c

That is,
L(50)

L(55)
� k () x � c
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A best critical region, according to Neyman-Pearson

Lemma, is

C = f(x1; : : : ; xn) : x � cg
This set has probability � = 0:023 given H0 : � = 50. Then,

0:023 = P (X � c;� = 50) = P (Z � c � 50

6=4
)

Since, from the table, z� = 2:00, we have

c � 50

6=4
= 2

That is, c = 53:0. The best critical region is:

C = f(x1; : : : ; xn) : x � 53:0g
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When H1 is a composite hypothesis (defined by inequalities),

the power of a test depends on each simple alternative

hypothesis.

Definition A test, defined by a critical region C of size � is

a uniformly most powerful test if it is a most powerful test

against each simple alternative in H1. The critical region C

is called a uniformly most powerful critical region of size �

Example Let X1; : : : ; X16 be a random sample from a normal

distribution with � = 36.

Find the best critical region with � = 0:05 for testing

H0 : � = 50 versus H1 : � > 50.
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ANSWER: For each simple hypothesis in H1, say � = �1, we
have,

L(50)

L(�1)
= exp

[
� 1

72

(
2(�1 � 50)

16∑
`=1

x` + 16(502 � �2
1)

)]
� k

Then

2(�1 � 50)

16∑
`=1

x` + 16(502 � �2
1) � 72 � ln k

This may be written in terms of X as

1

16

16∑
`=1

x` �
�72 � ln k

32(�1 � 50)
+

50 + �1

2
=: c

That is,
L(50)

L(�1)
� k () x � c

A best critical region, according to Neyman-Pearson
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Lemma, is

C = f(x1; : : : ; xn) : x � cg
This set has probability � = 0:05 given H0 : � = 50. Then,

0:05 = P (X � c;� = 50) = P (Z � c � 50

6=4
)

Since, from the table, z0:05 = 1:64, we have

c � 50

6=4
= 1:64

That is, c = 52:46. A best uniformly most powerful critical

region is:

C = f(x1; : : : ; xn) : x � 52:46g
Note that c = 52:46 is good for all values of �1 > 50 (what

changes is the value of k).
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Example Let X have a binomial distribution resulting from n

trials each with probability p of success. Given �, find a

uniformly most powerful test of the null hypothesis

H0 : p = p0 against the one sided alternative H1 : p > p0.

ANSWER: For p1 arbitrary except for the requirement

p1 > p0, consider the ratio

L(p0)

L(p1)
=

(n
x

)
px0(1� pn�x0(n

x

)
px1(1� pn�x1

� k

This is equivalent to(
p0(1� p1)

p1(1� p0)

)x (1� p0

1� p1

)n

� k
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and

x ln

(
p0(1� p1)

p1(1� p0)

)
� ln k � n ln

(
1� p0

1� p1

)
Since p0 < p1 and p0(1� p1) < p1(1� p0), we have that for

each p1 with p0 < p1,

x

n
�

ln k � n ln
(
1�p0
1�p1

)
n ln

(
1�p0
1�p1

) =: c

CONCLUSION:

A uniformly most powerful test of H0 : p = p0 against

H1 : p >0 is of the form y=n � c
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An Observation

If a sufficient statistic Y = h(X1; X2; : : : ; Xn) exists for �, then,

by the factorization theorem,

L(�0)

L(�1)
=

g(�̂; �0) � u(x1; : : : ; xn)
g(�̂; �1) � u(x1; : : : ; xn)

=
g(�̂; �0)

g(�̂; �1)

That is, in this case the inequality

L(�0)

L(�1)
� k

provides a critical region that depends on the data x1; : : : ; xn

only through the sufficient statistic �̂.

THEN,

best critical and uniformly most powerful critical regions are

based upon sufficient statistics when they exist!
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