
5.5 Minimum Variance Estimators

We discussed in the previous section how to compare two

unbiased estimators for the same parameter. The one with

smaller variance should be considered “better”.

QUESTION: Is there a “best” estimator, in the sense of

possessing a minimum variance? How do we know if an

estimator is “best”?

In this section we discuss an answer to this question. We

shall see that the variance of an unbiased estimator cannot

be smaller than certain bound, called the Cramér-Rao

bound.
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The Cramer-Rao Inequality and Lower Bound

The Cramer-Rao Lower Bound (CRLB) sets a lower bound

on the variance of any unbiased estimatora. It is useful as

follows:

1. If we find an estimator that achieves the CRLB, then we

know that we have found a Minimum Variance Unbiased

Estimator (MVUE).

2. THe CRLB can provide a benchmark against which we

can compare the performance of any unbiased estimator.

3. The CRLB can be used to rule-out impossible estimators.

4. The theory behind the CRLB can tell us if an estimator

exists that achieves the lower bound (not discussed here)

a R. Nowak, C. Scott, The Cramer-Rao Lower Bound,

cnx.rice.edu/content/m11429/latest
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Theorem: The Cramer-Rao Inequality

Let be a random sample from , where

has continuous first-order and second-order partial

derivatives at all but a finite set of points. Suppose the set

of ’s for which does not depend on .

Let be an unbiased estimator of . Then,

[( ) ]

and

[ ]

74

Example 5.5.1 Let denote the total number

of successes in each of independent trials, where =Prob.

of success at any given trial is unknown parameter.

We have that

Let =total # of successes. Define

.

a) Show that is unbiased.

b) Compare with the CRLB for .

ANSWER

(a): .
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(b) We have,
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b) We use the second form of the CRLB.

Note that

Then

and

Take expected value in above equation to get:
[ ]
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Substituting in the formula for the CRLB we get

( )

CONCLUSION: equals the CRLB.
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Definition

1. is a best or Minimum Variance Unbiased Estimator if it

is unbiased and for all unbiased estimators ,

2. An unbiased estimator is efficient if the variance of

equals the CRLB.

3. The efficiency of an estimator is the ratio of the CRLB

to .

Example:

The estimator in Example 5.5.1 is both best and efficient,

and its efficiency is 1.
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Example 5.5.2

Let be a random sample from

Can the CRLB be applied to the estimator

ANSWER: No. Reason: on a set that depends

on , thus violating one of the hypotheses of the theorem

that gives the inequality.
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Limitations of the CRLB

One limitation we already discussed, the fact that the

“domain” of the pdf does not depend on the parameter.

Another limitation is that most estimators (including

maximum likelihood estimators) are biased in finite samples.

There is a version of the CRLB for biased estimators, but it

is of limited practical value, since it contains a term that

depends on an unknown quantity.

The CRLB is more useful in large samples for a class of

estimators (“consistent”) that have the property that they

are asymptotically unbiased. It can be proved that under

very general conditions, maximum-likelihood estimators are

in this class.

Consistency will be studied in Section 5.7
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5.6 Sufficiency

Consider a coin flipped 4 times.

The prob. of success (head) is unknown.

Suppose that was observed.

An estimate for is

successes

trials
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Let’s compute some conditional probabilities:

and

2 successes in 4 trials

( )

( )
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Hence
( )

Similarly, we may verify that

( )

( )

( )

( )

( )
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So knowing what a particular outcome is does not add any

additional information to what we know about , once we

have been informed that . This motivates the

following

Definition Let be a random sample from

. The estimator is said to be

sufficient for if for all and all possible sample points, the

conditional pdf of given does not depend on .
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The Fisher-Neyman Criterion

Theorem 5.6.1 Let be a random sample from

. Then,

is sufficient for

if and only if

the joint pdf of the ’s factors into a product of the pdf for

times a second function that does not depend on , that is,

∏

COMMENT

If is sufficient for , then any one-to-one function of (for

ex., or ) is also sufficient.
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Example 5.6.1 Let be a random sample of

Bernoulli RVs with unknown parameter . The pdf of is

Is
∑

sufficient for ?

ANSWER: The Fisher-Neyman condition requires that we

compute three terms:

(F-N)
∏

(a) the product on the LHS of ”=”,

(b) the pdf of , and,

(c) the function .

We now proceed to do this.
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(F-N)
∏

(a) The product on the LHS of F-N is

where

(b) Note that is binomial since it is the number of

successes in independent trials. Then,
( )
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(c) Choose the function in F-N to be

( )
where

Then F-N theorem holds, hence is sufficient.
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Example 5.6.2 Let be a random sample from the

uniform pdf

Knowing that is the MLE for , determine if is

sufficient.

ANSWER: Here is F-N (for reference):

(F-N)
∏

The L-H-S of F-N is

Recall from Ex. 5.4.2 that
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Finally, we may set .
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A Result that is Easier to Use than F-N

The Factorization Theorem 5.6.2 Let be a

random sample from . Then,

is sufficient for

if and only if

there are functions and such that

∏
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Example 5.6.3 A random sample of size is drawn from

the pdf

Use the Factorization Theorem to find an estimator that is

sufficient for .

ANSWER:

By staring at the last expression, we see that
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could be used as an estimator:

( )

By the Factorization Thm., is sufficient.
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Example 5.6.4: Why MLEs are preferred to

Method-of-Moments Estimators

GIVEN: an MLE for based on a random sample of

size drawn from a pdf .

GIVEN: a sufficient estimator for .

CLAIM: is a function of .

Idea of Proof: Consider the likelihood function

∏

From the Factorization Theorem we have

From above eqn. & since maximizes , maxi -

mizes . But any that maximizes is a fn. of .
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Sufficient Estimators are more Efficient

Consider estimators for based on a random sample of size

drawn from .

A Theorem of Rao-Blackwell states that

given estimators,

unbiased and sufficient, and,

biased, not sufficient,

then necessarily , that is, is more

efficient. Thus to search for highly efficient estimators, it

suffices to search among sufficient estimators.

Moreover, a result of Lehman and Scheffé says that under

very general conditions, there is only one sufficient

estimator. If this is the case, then finding one sufficient

estimator gives the best unbiased estimator.
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5.7 Asymptotically unbiased estimators

Consider estimators based on a random sample of size

taken from a pdf . We say that is asymptotically

unbiased if

for all

EXAMPLE: A random sample of size is drawn from a

normal pdf. Set
∑
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Let us prove that is asymptotically unbiased.

(
∑

)
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Section 5.7: Consistent Estimators

Definition An estimator is consistent for

if it converges in probability to , that is,

for all
( )

99

Problem 5.7.1 Let be a random sample from the

uniform distribution over . Set . Is

consistent?

ANSWER: Recall pdf of (p. 182) is:

( )

Consider arbitrary but fixed. Then,

( ) ( )

∫ ( )

∣∣∣∣

( )
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Then

( ) ( )

So YES, is consistent.
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