Section 5.4 Properties of Estimators

FACT: The method of maximum likelihood and the method
of moments do not necessarily produce the same answer.

QUESTION:
Is there a “best” estimator 87

FACT: every estimator is a function of several RVSs:
6=nh(YiY5, ..., Y,). As such, it is also a RV, so it has a pdf,
mean, variance, moments, etc.

Notation for the pdf of an estimator:

fa(u) or ps(u)
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Example 5.4.1 A coin for which p = P(heads) is unknown is
to be tossed 10 times to estimate p with the function

p = X/10, where X==# of observed heads. Suppose that

p = 0.60.

a) Compute

X
= ( _ p) <0.10
10
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ANSWER:
P (|f<—0 _ p| < 0.10)
= P (0.60 - 0.10 < 35 < 0.60 + 0.10)
—P(5<X<7)

—P(X=5)+P(X=6)+P(X=7)

= (1)(0.60)°(0.40)° + (0)(0.60)°(0.40)*
+(%)(0.60)7(0.40)°

~ 0.666
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b) Same question as in part (a), only the coin is tossed 100

times.

ANSWER:

Note n = 100 is large = may use ~Z.
Since

E(X/n)=p and Var(X/n)=p(l—p)/n
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we have, for p = 0.60, that

X
P(m—p‘go.lO)

= (0.60 ~0.10 < X < 0.60 + 0.10)

X
P (0.50 < ;%5 < 0.70)

(0.60)(0.40) — (0.60)(0.40) — (0.60)(0.40)
100 100 100

— ( 0.50—-0.60 < X/100—0.60 < 0./0—-0.60 )

= P(—2.04 < Z < 2.04) =0.9586
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FIGURE 5.4.1 FROM TEXTBOOK
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Unbiasedness

f;az(u)
True 6 Tn;:eé)
| FIGURE 5.4.2
Definition of Unbiased Estimator
Let Wi, ..., W, be a random sample from fy(w, 6). An

estimator 6 = h(W4, .. ., W,) is unbiased for 6 if E(8) = 6 for
all 6.
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Example 5.4.2 Consider the uniform pdf

f(y;0) =1/, 0<y<9H

Knowing that the MLE and method of moments estimators
for 6 are, respectively,

9A2 = Ymax and 1 —

are either or both unbiased?
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ANSWER.

So 07 is

not biased.
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The pdf of Ymax (Corollary b, page 182) is:

1 u\ n—1
fé\Q(u):fymax(u):n'g' (5) ’ O<u<ég

SO

E(62)

1
C\
D
<
D[ S
VRN
| <
N—
7
|—l
Q.
<

Conclusion: 9, is biased.

COMMENT: Note that 65 := 2H1Y},,, is unbiased. We may
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see this from this calculation:

n—+1

E(63) = E( - Yimax)
n—+1
— 'E(Ymax)
n
1
_ n -+ on 0 — o
n n-—+1
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Example 5.4.3 Let Wi, W, be a random sample from a
probability model with mean n. Let

= aWi + aaWs

For what values of aj, a» is i unbiased?

ANSWER: We want E(4) = u.

We have,
E(ﬁ,) — E(31W1—|—32W2)

= aEW1) + aE(W))

= a1+ a2l
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Now this quantity equals u if and only if

aih + acy = <= art+ax =1

So the condition for 4 to be unbiased is that a; + a» = 1.
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Example 5.4.4 Let Y7, ..., Y, be a random sample from a
normal distribution with unknown w and o?. From Ex. 5.2.4
we know the MLE for ¢? is

2 1¢ =
62 == (Ve—Y)3
n£:1

Is 62 an unbiased estimator for o7

ANSWER: (Given in class)
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Example 5.4.5 Let Y; and Y5 be a random sample from the
pdf

1
fy(y;0) = Ik e % y>0

where 6 is unknown. Show that the geometric mean /Y1 Y5
IS a biased estimator for 8, and find an unbiased estimator
based on the geometric mean.
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ANSWER:

1

o0 o0 1
ElVYiYs] = / / VY12 ge_yl/e : 56_”/9 dy1 dy>
o Jo

= [ [T e v ey dys
0 0

= / e dys / v2 ge " dy,
0 0

o0 1 ° JT\°  or
T gy — (g2 _ T
([ g ) =(#25) -5

The unbiased estimator is then,

4/Y1 Y5

T

=
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The next slide shows the results of a computer simulation

Each one of Columns C1 and C2 has 40 random numbers
taken from the pdf f(Y;1) =€, y > 0.

Column C3 has the 40 corresponding geometric means.

Column C4 has the 40 simulated 8’'s
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TABLE 5.4.1

C1 (/) 3 Cc4
vl y2 sqrt Est,

1 0.70495 1.01324 0.84515 1.07608 |
2 3.96959 0.58870 1.52869 1.94639
3 0.26150 2.92107 0.87399 1,11280
4 0.44146 0.31922 037540 0.47797
5 1.55721 1.86945 1.70620 217241
6 1.68906 0.41461 0.83684 1.06550
7 0.36449 0.33562 0.34976 0.44532
8 1.12210 0.23355 0.51193 0.65180
9 1.54124 0.45424 0.83671 1.06534
10 0.12599 1.73641 0.46773 0.59554
11 0.20148 0.07541 0.12326 0.15694
12 0.53266 0.29699 039774 0.50641
13 0.20425 1.49059 0.55177 0.70254
14 4.49631 0.48274 1.47327 1.87583
15 0.07196 243756 0.41882 0.53326
16 0.50555 1.45129 0.85656 1.09061
17 2.00492 0.61484 1.11027 1.41364
18 4.40562 0.37557 128632 1.63780
19 0.07702 0.46802 0.18986 0.24174
20 0.13929 0.17789 0.15741 0.20043 A
21 000732 047298 021455 027317 [ vereeed =102
22 0.24751 0,15451 0.19556 0.24899
23 0.20255 1.43477 0.53909 0.68639
24 0.04071 0.48771 0.14091 0.17941
25 0.23687 0.72270 0.41375 0.52680
26 0.85065 1.06104 0.95004 1.20963
27 0.33847 0.97953 0.57580 0.73313
28 0.67740 0.01732 0.10832 0.13792
29 1.62282 5.99154 3.11820 3.97022
30 1.28070 0.09598 0.35060 0.44640
31 3.40310 1.22856 2,04473 2.60343
32 2.53520 0.64045 1.27423 1.62240
33 1.53845 0.38732 0.77193 0.98285
34 3.60054 1.10229 1.99220 2.53655
35 0.30786 0.86581 0.51628 0.65735
36 2.50065 0.09313 0.48259 0.61445
37 0.52834 1.12503 0.77098 0.98164
38 0.80602 2.84524 1.51437 1.92816
39 0.17185 1.04371 0.42351 0.53923
40 0.98211 0.58988 0.76114 0.96911
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Efficiency Another measure used to decide if certain
estimator is better than another is given in terms of the
variance of the estimators. Smaller variance is better
because the smaller variance estimator would have better
chance to be close to the unknown parameter than the
estimator with larger variance

FIGURE 5.4.3
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We say that 6§, is more efficient than 67 if

Var(61) < Var(6s)
The Relative Efficiency of §; with respect to 6, is

\/ar(éﬁ)
\/ar(é})

FIGURE 5.4.3
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Example 5.4.6 Let Y7, Y5> and Yz be a random sample from
a normal distribution where both u and o are unknown.
Knowing both are unbiased, which is more efficient estim.
for u,

(1 _1Y 1Y 1Y (1 _1Y—|—1Y—|—1Y
= —Y1+ —Yo + — or = — — —
w1 41 22 43 V%) 31 32 33

ANSWER:

Var(f1) = Var(zYi+3Ys+3Y3)

= =Var(1) + zVar(Y2) + s=Var(Ys)

W
Q
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Var(fty) = Var(%Yl + %YQ + %Ys)
= Var(v) + Var(va) + Lvar(vs)

1.0
= 30

Hence [i> is more efficient than [;.
T he relative efficiency of [, to [ is 9/8.
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Example 5.4.7 Let Y7, ..., Y, be a random sample from the
uniform distribution over [0, 8]. We know

Ymax

N ? ~
01 = — Y,, and 0, =
=23V :

=1 f

are both unbiased estimators for 8 (Example 5.4.2). Which
is more efficient?
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ANSWER:

But E(Y;) =

0
2

Var(GAl)

2 n
Var(=) V)
f =1

4 n
— > Var(Yy)
n =1

4SO - ErY
=1
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For Var(8,) we need the first and second moments; Recall
pdf of Ymax (p. 182) is:

n—1
R ) =5 (5) . 0<y<o

6 \6
We know E(Ymax) = ;76 and we have
2 7 5 onyynl n o
E(Ymax):/O Y 5(5) dy:n—l—QG
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Then,

\/al’(éz)

Var(

(

n—+1

_|_
n

1

) Ymax)
n

)2 Var (Vinas)

° ng? n?
( n > .[n—|—2_(n—|—1)2
92
n(n—+2)
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Conclusion for Example 5.4.7

We obtained the following variances:

R 62 R 6?2
Var(61) = — and Var(6r) =
ar(61) 3n ar(62) n(n+ 2)

To see which one is smaller, we compare the coefficients of
62 in both. We have,

1 1
— > , h=234,...
3n  n(n+2)

We conclude that éz IS more efficient than @1
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