
Section 5.4 Properties of Estimators

FACT: The method of maximum likelihood and the method

of moments do not necessarily produce the same answer.

QUESTION:

Is there a “best” estimator �̂?

FACT: every estimator is a function of several RVs:

�̂ = h(Y1; Y2; : : : ; Yn). As such, it is also a RV, so it has a pdf,

mean, variance, moments, etc.

Notation for the pdf of an estimator:

f�̂(u) or p�̂(u)
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Example 5.4.1 A coin for which p = P (heads) is unknown is

to be tossed 10 times to estimate p with the function

p̂ = X=10, where X=# of observed heads. Suppose that

p = 0:60.

a) Compute

P

(
X

10
� p

)
� 0:10
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ANSWER:

P
(∣∣∣ X10 � p

∣∣∣ � 0:10
)

= P
(
0:60� 0:10 � X

10
� 0:60 + 0:10

)

= P (5 � X � 7)

= P (X = 5) + P (X = 6) + P (X = 7)

=
(10
5

)
(0:60)5(0:40)5 +

(10
6

)
(0:60)6(0:40)4

+
(10
7

)
(0:60)7(0:40)3

� 0:666

47



b) Same question as in part (a), only the coin is tossed 100

times.

ANSWER:

Note n = 100 is large ) may use Z.

Since

E(X=n) = p and V ar(X=n) = p(1� p)=n
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we have, for p = 0:60, that

P
(∣∣∣ X

100
� p

∣∣∣ � 0:10
)

= P
(
0:60� 0:10 � X

100
� 0:60 + 0:10

)

= P
(
0:50 � X

100
� 0:70

)

= P

(
0:50�0:60q
(0:60)(0:40)

100

� X=100�0:60q
(0:60)(0:40)

100

� 0:70�0:60q
(0:60)(0:40)

100

)

= P (�2:04 � Z � 2:04) = 0:9586

49



FIGURE 5.4.1 FROM TEXTBOOK
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Unbiasedness

Definition of Unbiased Estimator

Let W1; : : : ;Wn be a random sample from fW (w; �). An

estimator �̂ = h(W1; : : : ;Wn) is unbiased for � if E(�̂) = � for

all �.
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Example 5.4.2 Consider the uniform pdf

fY (y ; �) = 1=�; 0 � y � �

Knowing that the MLE and method of moments estimators

for � are, respectively,

�̂2 = Ymax and �̂1 =
2

n

n∑
`=1

Y`;

are either or both unbiased?
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ANSWER.

E(�̂1) = E(
2

n

n∑
`=1

Yi) =
2

n

n∑
`=1

E(Y`)

=
2

n

n∑
`=1

�

2
=

2

n

n�

2
= �

So �̂1 is not biased.
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The pdf of Ymax (Corollary b, page 182) is:

f�̂2(u) = fYmax(u) = n � 1
�
�
(u
�

)n�1
; 0 � u � �

so

E(�̂2) =

∫ �

0
u � �n

�
�
(u
�

)n�1
du

=
n

�n
� u

n+1

n + 1

∣∣∣∣�
0

=
n

n + 1
�

Conclusion: �̂2 is biased.

COMMENT: Note that �̂3 :=
n+1
n
Ymax is unbiased. We may
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see this from this calculation:

E(�̂3) = E(
n + 1

n
� Ymax)

=
n + 1

n
� E(Ymax)

=
n + 1

n
� n

n + 1
� = �
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Example 5.4.3 Let W1;W2 be a random sample from a

probability model with mean �. Let

�̂ := a1W1 + a2W2

For what values of a1; a2 is �̂ unbiased?

ANSWER: We want E(�̂) = �.

We have,

E(�̂) = E(a1W1 + a2W2)

= a1E(W1) + a2E(W2)

= a1�+ a2�
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Now this quantity equals � if and only if

a1�+ a2� = � () a1 + a2 = 1

So the condition for �̂ to be unbiased is that a1 + a2 = 1.
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Example 5.4.4 Let Y1; : : : ; Yn be a random sample from a

normal distribution with unknown � and �2. From Ex. 5.2.4

we know the MLE for �2 is

�̂2 =
1

n

n∑
`=1

(Y` � Y )2

Is �̂2 an unbiased estimator for �?

ANSWER: (Given in class)
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Example 5.4.5 Let Y1 and Y2 be a random sample from the

pdf

fY (y ; �) =
1

�
e�y=�; y > 0

where � is unknown. Show that the geometric mean
p
Y1 Y2

is a biased estimator for �, and find an unbiased estimator

based on the geometric mean.
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ANSWER:

E[
p
Y1Y2] =

∫
1

0

∫
1

0

p
y1 y2 �

1

�
e�y1=� � 1

�
e�y2=� dy1 dy2

=

∫
1

0

∫
1

0

p
y1

1

�
e�y1=� � py2

1

�
e�y2=�dy1 dy2

=

∫
1

0

p
y1

1

�
e�y1=� dy1

∫
1

0

p
y2

1

�
e�y2=� dy2

=

(∫
1

0

p
y
1

�
e�y=� dy

)2

=

(
�1=2

p
�

2

)2

=
��

4

The unbiased estimator is then,

�̂ =
4
p
Y1 Y2

�
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The next slide shows the results of a computer simulation

Each one of Columns C1 and C2 has 40 random numbers

taken from the pdf f (Y ; 1) = e�y , y > 0.

Column C3 has the 40 corresponding geometric means.

Column C4 has the 40 simulated �’s
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Efficiency Another measure used to decide if certain

estimator is better than another is given in terms of the

variance of the estimators. Smaller variance is better

because the smaller variance estimator would have better

chance to be close to the unknown parameter than the

estimator with larger variance
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We say that �̂2 is more efficient than �̂1 if

V ar(�̂1) < V ar(�̂2)

The Relative Efficiency of �̂1 with respect to �̂2 is

V ar(�̂2)

V ar(�̂1)
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Example 5.4.6 Let Y1, Y2 and Y3 be a random sample from

a normal distribution where both � and � are unknown.

Knowing both are unbiased, which is more efficient estim.

for �,

�̂1 =
1

4
Y1 +

1

2
Y2 +

1

4
Y3 or �̂2 =

1

3
Y1 +

1

3
Y2 +

1

3
Y3

ANSWER:

V ar(�̂1) = V ar(1
4
Y1 +

1
2
Y2 +

1
4
Y3)

= 1
16
V ar(Y1) +

1
4
V ar(Y2) +

1
16
V ar(Y3)

= 3
8
�2
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V ar(�̂2) = V ar(1
2
Y1 +

1
2
Y2 +

1
2
Y3)

= 1
9
V ar(Y1) +

1
9
V ar(Y2) +

1
9
V ar(Y3)

= 1
3
�2

Hence �̂2 is more efficient than �̂1.

The relative efficiency of �̂2 to �̂1 is 9=8.
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Example 5.4.7 Let Y1; : : : ; Yn be a random sample from the

uniform distribution over [0; �]. We know

�̂1 =
2

n

n∑
`=1

Y`; and �̂2 =
n + 1

n
Ymax

are both unbiased estimators for � (Example 5.4.2). Which

is more efficient?
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ANSWER:

V ar(�̂1) = V ar(
2

n

n∑
`=1

Y`)

=
4

n2

n∑
`=1

V ar(Y`)

=
4

n2

n∑
`=1

E(Y 2
` )� E(Y )2

But E(Y`) =
�
2

and E(Y 2
` ) =

∫ �
0 y

2 � 1
�
dy = �2

3
, so

V ar(�̂1) =
4

n2

n∑
`=1

�2

3
� �2

4
=

4

n2
� n�

2

12
=

�2

3n
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For V ar(�̂2) we need the first and second moments; Recall

pdf of Ymax (p. 182) is:

fYmax (y) =
n

�

(y
�

)n�1
; 0 � y � �

We know E(Ymax) =
n

n+1
� and we have

E(Y 2
max) =

∫ �

0
y2 � n

�

(y
�

)n�1
dy =

n

n + 2
�2
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Then,

V ar(�̂2) = V ar(
n + 1

n
� Ymax)

=

(
n + 1

n

)2

� V ar(Ymax)

=

(
n + 1

n

)2

� [ E(Y 2
max)� E(Ymax)

2 ]

=

(
n + 1

n

)2

� [ n�2

n + 2
� n2

(n + 1)2
�2 ]

=
�2

n(n + 2)
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Conclusion for Example 5.4.7

We obtained the following variances:

V ar(�̂1) =
�2

3n
and V ar(�̂2) =

�2

n(n + 2)

To see which one is smaller, we compare the coefficients of

�2 in both. We have,

1

3n
>

1

n(n + 2)
; n = 2; 3; 4; : : :

We conclude that �̂2 is more efficient than �̂1
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