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5.1 Introduction

An Experiment: In 10 consecutive trips to the free throw

line, a professional basketball player makes the first 6

baskets and misses the next 4 baskets.

If p = probability of a making a basket,

what is a reasonable value for p?

ANSWER 1:

p =
# of successes

# of trials
=

6

10
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ANSWER 2:

The event

“SSSSSSFFFF” has

probability

f (p) = p6(1� p)4

0.2 0.4 0.6 0.8 1

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

To find where the maximium occurs, take derivative:

f 0(p) = 6p5(1� p)4 + p6 � 4(1� p)3 = 2p5(1� p)3(5p � 3)

Therefore, f 0(p) = 0 ) p = 1 or p = 0 or p = 3=5

Conclusion: Select p = 3=5, which maximizes f (p) in [0; 1].
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What is Statistical Inference?

Data generated in accordance with certain

unknown probability distribution must be analyzed and some

inference about the unknown distribution has to be made.

In some problems, the probability distribution which

generated the experimental data is completely known except

for one or more parameters, and the problem is to make

inferences about the values of the unknown parameters.

For example, suppose it is known that the distribution of heights in a population of individuals is normal with

some mean � and variance �2. By observing the height data for a random sample of individuals we may make

inferences about � and �2.

In our discussion we shall use �1; �2; : : : to denote parameters.

The set 
 of all values of the parameters is called

parameter space.
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Common Distributions

Distribution Probability Fn Variable Range

Hypergeometric

`
r

k

´
�

`
w

n�k

´`
r+w

n

´ k = 0; 1; : : : ; n

Binomial(n,p)
“n
k

”
pk(1� p)n�k k = 0; 1; : : : ; n

Poisson(�)
e���k

k!
k = 0; 1; 2; : : :

Geometric(p) p(1� p)k�1 k = 1; 2; : : :

Neg.Bin.(r,p)
“k � 1

r � 1

”
pr (1� p)k�r k = r; r + 1; : : :

Uniform on (a,b)
1

b � a
a < y < b

Normal(�,�)
1p
2��

e
�

(y��)2

2�2 �1 < y <1

Exponential(�) �e��y 0 � y <1
Gamma(r,�)

�r

(r � 1)!
y r�1 e��y 0 � y
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5.2 Part 1: Maximum Likelihood

GIVEN:

� W1; : : : ;Wn a random sample from continuous pdf fY (y ; �)

with unknown parameter �.

� data values W1 = !1; : : : ;Wn = !n

DEFINE: the Likelihood Function

L(�) :=

n∏
`=1

fW (!`; �) = fW (!1; �) � � � fW (!n; �)

the MAXIMUM LIKELIHOOD ESTIMATOR for � (or MLE)

is a number �̂ such that L( �̂ ) � L(�); for all �
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An observation about optimization that will make

our life easier later

IF f (x) is a positive function, then both f (x) and ln(f (x))

attain local minima (or maxima) at the same locations x.

1 2 3 4

1

2

3

4

5

In other words:

to find x that minimizes (or maximizes) f (x),

it is enough to

find x that minimizes (or maximizes) ln(f (x)).
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Example 5.2.1 Suppose k1; : : : ; kn are n observations of a

RV X with pdf fX(k) = (1� p)k�1p, k = 1; 2; 3; : : : n.

Find the MLE for p=probability of success.

ANSWER: The likelihood function is

L(p) = (1� p)k1�1p � � � (1� p)kn�1p = (1� p)k�n � pn

where for convenience we set k = k1 + � � �+ kn.

Take the logarithm of L(p):

lnL(p) = (k � n) ln(1� p) + n ln p

The derivative of “lnL(p)” is

d

dp
(lnL(p)) = (k � n) � �1

1� p
+
n

p
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The critical points of lnL(p) are found by setting the

derivative to zero:

(k � n) � �1
1� p

+
n

p
= 0 ) p(n � k) + n(1� p) = 0

Solve for p above to get p̂:

p̂ =
n

k
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Example 5.2.2 Five data points

Y1 = 9:2; Y2 = 5:6; Y3 = 18:4; Y4 = 12:1; Y5 = 10:7

were taken from the pdf

fY (y ; �) =
1

�2
y e�y=�; 0 < y <1; 0 < � <1

Find a reasonable estimate for �.
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ANSWER:

L(�) = 1
�2

y1 e�y1=� � � � 1
�2

y5 e�y5=�

= ��10 y1 � � � y5 e�(1=�)y

where y = y1 + � � �+ y5. Hence,

lnL(�) = �10 ln � + ln(y1 � � � y5)�
1

�
y

Set the derivative equal to zero:

d

dp
(lnL(p)) =

�10
�

+
1

�2
� y = 0

to get

�̂ =
1

10
y =

1

10
(y1 + � � �+ y5) =

56:0

10
= 5:6
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Example 5.2.3: MLE when derivatives fail

Suppose y1; : : : ; yn are measurements representing the pdf

fY (y ; �) = e�(y��); � � y ; � > 0

Find the MLE for �.

ANSWER:

L(�) =

n∏
`=1

e�(y`��) = e�(
Pn

`=1 y`�n�) = Cen�

The following is a plot of the likelihood function:
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y'1 y'2 y'3
!

L!!"

The largest possible value of � maximizes the likelihood

function. But it is required that

� � y1, and � � y2, . . . , and � � yn. Then

� � y 01 := minfy1; : : : ; yng ) �̂ = y 01
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Finding MLEs with 2 or more parameters

If the model depends on 2 parameters �1 and �2 (what is an

example?), finding MLEs requires solving the system of

equations 
@L(�1; �2)

@�1
= 0

@L(�1; �2)

@�2
= 0

In general, MLEs for

k parameter models

require the solution of a system of

k equations and k unknowns ,

which are a direct generalization of the system given above.
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Example 5.2.4 A random sample of size n is drawn from a

two parameter normal pdf. Use the method of maximum

likelihood to find formulas for �̂ and �̂2

ANSWER: (To be given in class)
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5.2 Part 2: The Method of Moments

Suppose Y is a continuous RV with pdf

fY (y ; �1; : : : ; �n). The k-th moment of Y is

E(Y k) =

∫ 1

�1
y k fY (y ; �1; : : : ; �n)dy; k = 1; 2; 3; : : :

Given a random sample (Y1; : : : ; Yn), the corresponding

k-th sample moment is

1

n

n∑
`=1

y k` =
1

n

(
y k1 + y k2 + � � �+ y kn

)
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The sample moment is an approximation to the moment.

We may form a system of equations, which has to be solved

for �1; �2; : : ::

∫ 1

�1
y1fY (y ; �1; : : : ; �n)dy =

1

n

n∑
`=1

y1`

...
...

∫ 1

�1
y k fY (y ; �1; : : : ; �n)dy =

1

n

n∑
`=1

y k`
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Example 5.2.5 Given the random sample

Y1 = 0:42; Y2 = 0:10; Y3 = 0:65; Y4 = 0:23;

drawn from the pdf

fY (y ; �) = � y ��1; 0 � y � 1

Find the method of moments estimate for �.
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ANSWER: The first moment of Y is

E(Y ) =

∫ 1

0
y� y ��1 dy =

∫ 1

0
� y � dy

=
�

� + 1
y �+1

∣∣∣∣1
0

=
�

� + 1

then

�

� + 1
=

1

n

n∑
`=1

y` =
1

4
(0:42 + 0:10 + 0:65 + 0:23) = 0:35

Solving for � we get the estimate

�̂ =
0:35

1� 0:35
= 0:54
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Case Study 5.2.2 The following is the maximum 24-hour

precipitation (in inches) for 36 inland hurricanes (1900-1969) over

the Appalachians, as recorded by the U.S. Weather Bureau:

31.00, 2.82, 3.98, 4.02, 9.50, 4.50, 11.40, 10.71, 6.31, 4.95, 5.64,

5.51, 13.40, 9.72, 6.47, 10.16, 4.21, 11.60, 4.75, 6.85, 6.25, 3.42,

11.80, 0.80, 3.69, 3.10, 22.22, 7.43, 5.00, 4.58, 4.46, 8.00, 3.73,

3.50, 6.20, 0.67

Here is a (density scaled) histogram of the data

4 8 12 16 20 24 28 32

0.02

0.04

0.06

0.08

0.1
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The histogram’s profile suggests that Y , the maximum 24-hour

precipitation can be modeled by the two-parameter gamma pdf,

fY (y ; r; �) =
�r

� (r)
y r�1 e��y

Knowing that E(Y ) = r=� and V ar(Y ) = r=�2,

estimate � and r using the method of moments, then plot

fY (y ; r; �) together with the histogram.
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ANSWER: Since V ar(Y ) = E(Y 2)� (E(Y ))2,

E(Y 2) =
r

�2
+

r2

�2
=

r(r + 1)

�2

From the data, the sample moments are

1

36

36∑
`=1

y` = 7:2875 and
1

36

36∑
`=1

y2` = 85:5894

The two equations to solve are:

r

�
= 7:2875 and

r(r + 1)

�2
= 85:5894

From the first equation we get r = 7:2875�, which when

substituted into the 2nd equation gives

7:2875�(7:2875�+ 1)

�2
= 85:5894)

 � = 0:2243

r = 1:635
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4 8 12 16 20 24 28 32

0.02

0.04

0.06

0.08

0.1

fY =
0:09673 y0:635

e0:2243 y
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5.3 Interval Estimation

The problem with point estimates:

THEY GIVE NO INDICATION ABOUT PRECISION

A way to deal with this problem is to construct a confidence

interval.

A confidence interval is an interval of numbers that has

“high probability” of containing the unknown parameter as

an interior point.

The width of the confidence interval gives a sense of the

estimator’s precision.
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Review of Y : If Y1; Y2; : : : ; Yn is a random sample (that is,

independent, identically distributed RVs), define

Y =
1

n
(Y1 + � � �+ Yn)

Fact: If �= dist’n w/mean �, std.dev. �,

Y` � �(�; �) for 1 � ` � n ) Y � �(�; �=
p
n)
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A Useful Problem: If Z � N(0; 1) (standard normal), find z

so that P (�z � Z � z) = 0:95.

!z z

AREA!0.95

!z z

ANSWER: note that P (Z � z) = 0:975.

The standard normal table gives z = 1:96.
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Example 5.3.1:

Construction of a 95% Confidence Interval

A sample Y1 = 6:5; Y2 = 9:2; Y3 = 9:9; Y4 = 12:4 is taken from a

normal pdf with � = 0:8 and unknown �.

We know the following facts:

�(1) The MLE is �̂ = Y = 1
n

∑n
` Y`,

in our case, = 1
4
(38:0)

�(2) Y��
�=
p
n
� N(0; 1), the standard normal dist.

�(3) P (�1:96 � Z � 1:96) = 0:95
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Combine (1) and (2) and (3) to get

P

(
�1:96 � Y � �

�=
p
n
� 1:96

)
= P (�1:96 � Z � 1:96) = 0:95

Then

P

(
�1:960:8p

4
� Y � � � 1:96

0:8p
4

)
= 0:95

Equivalently,

P
(
�1:960:8p

4
� �� Y � 1:960:8p

4

)

= P
(
Y � 1:960:8p

4
� � � Y + 1:960:8p

4

)

= 0:95
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That is,

P
(
9:5� 1:960:8p

4
� � � 9:5 + 1:960:8p

4

)

= P (8:72 � � � 10:28)

= 0:95

Recall � is a constant.

The 95% confidence interval (8.72,10.28)

has a 95% chance of containing �.

More precisely,

if many intervals are computed from samples using this

procedure, approximately 95% of them will contain �.
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Case Study 5.3.1 The sizes of 84 Etruscan skulls from

archeological digs have sample mean y = 143:8 mm. Skill widths of

present day italians have a mean of 132:4 mm and a standard

deviation of 6:0 mm. What can be said about the statement that

the italians and etruscans share the same ethnic origins?

ANSWER: Construct a 95% confidence interval for the true mean

of the population of etruscans, and determine if 132:4 lies in it. If

not, it may be argued that italians and etruscans aren’t related.

The endpoints of a 95% confidence interval for � are given by(
y � 1:96 � �p

n
; y � 1:96 � �p

n

)
=(

143:8� 1:96 � 6:0p
84

; 143:8� 1:96 � 6:0p
84

)
= (142:5; 145:1)

Conclusion: since 132:4 62 (142:5; 145:1), a sample mean of

143:8 based on a sample of size 84 is not likely to come from

a population where � = 132:4.
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Confidence intervals in general

A 100(1� �)% confidence interval for � is obtained as

follows:

First find z �

2
defined by

the equation

P (Z � z �

2
) =

�

2

z

AREA!
Α
####
2

z

In practice z �

2
is found with table/computer.

The 100(1� �)% confidence interval for � is(
y � z �

2
� �p

n
; y + z �

2
� �p

n

)
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Confidence Interval for binomial parameter p

The following is a Theorem we don’t prove here:

IF X � binomial(n,p) witn n largeTHEN X=n�pq
(X=n)(1�X=n)

n

� N(0; 1)

From this relation we have

P

�z �

2
� X=n � p√

(X=n)(1�X=n)
n

� z �

2

 � 1� �

We may solve as before to get the

100(1� �)% confidence interval for p(
x

n
� z �

2

√
(x=n)(1� x=n)

n
;
x

n
+ z �

2

√
(x=n)(1� x=n)

n

)
;

whenever X=number of successes in n independent trials,

where n is large and p is unknown.
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Case Study 5.3.2 A recent poll found that 713 of 1517

respondents accepted the idea that intelligent

extraterrestrials exist. What can we conclude about the

proportion of all americans that believe the same thing?

ANSWER: We have n = 1517 and x = 713.

The 95% confidence interval is(
x
n
� 1:96

√
(x=n)(1�x=n)

n
; x

n
+ 1:96

√
(x=n)(1�x=n)

n

)
=(

713
1517

� 1:96

√
( 713
1517

)(1� 713
1517

)

1517
; 713

1517
+ 1:96

√
( 713
1517

)(1� 713
1517

)

1517

)
= (0:44; 0:50)

CONCLUSION: IF the true proportion of americans who

believe in extraterrestrial life is less than 0.44 or more than

0.50, it is highly unlikely that a sample proportion based on

1517 responses would be 0.47.
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Example 5.3.2: Testing Random Number Generators
Suppose Y1; Y2; : : : ; Yn denote measurements from a continuous pdf

fY (y). Let X= number of Y`’s that are less than the median of

fY (y). If the samlple is truly random, we would expect a 95%

confidence interval based on x=n to contain the value 0:5. We call

this the median test.

A set of 60 computer generated samples shown in table 5.3.2

represent the exponential pdf e�y , y � 0. Does this sample pass

the median test?

ANSWER: First compute the median:∫ m

0

e�y dy = �e�y
∣∣m
0
= 0:5) m = 0:69315

Of the 60 entries in table 5.3.2, a total of 26 fall to the left of the

median, so x = 26 and x=n = 26=60 = 0:433.

Let p=probability that a random observation produced by the

random number generator will lie to the left of the pdf’s median.
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Based on these 60 observations, the 95% confidence interval for p

is (
26
60

+ 1:96

√
( 26
60
)(1� 26

60
)

60
; 26
60

+ 1:96

√
( 26
60
)(1� 26

60
)

60

)

= (0:308; 0:558)

p = 50 is contained in the interval, so the sample passes the test.
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Binomial Dist. and Margin of Error

MARGIN OF ERROR = maximum radius of a 95% interval

(usually as a percentage).

Let w :=width of a 95% confidence int. for p.

From Theorem 5.3.1,

w = x
n
+ 1:96

√
(x=n)(1�x=n)

n

�
(

x
n
+ 1:96

√
(x=n)(1�x=n)

n

)

= 3:92

√
(x=n)(1�x=n)

n

Note the largest value possible for x
n
(1� x

n
) is 1

2
� 1
2
= 1

4
. Then,

2 d = max w = 3:92

√
1

4n
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Definition 5.3.1 The margin of error associated with an

estimate x
n
, where x is the number of successes in n

independent trials, is 100d % , where d = 1:96
2
p
n
.
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Example 5.3.3 Modified

”40% of the Providence-area residents remembered seeing

Toyota’s ads on television.

The fine print of this report further states that there is a

margin of error of 6% Approximately how many people were

interviewed?

ANSWER:

0:06 =
1:96

2
p
n

Then
p
n =

1:96

2 � 0:06 = 16:33

) n = 16:332 � 267
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Translation: If 100 surveys were completed with Providence

residents, the true percentage answer (i.e., if every

Providence resident completed the survey) would fall

between 34% and 46% in 95 of the 100 surveys.

Some people mistakenly say,

”The sample is 95% accurate.”

But remember, the margin of error is a measure of precision,

not accuracy. Ultimately, the bottom line is that the 6%

margin of error is a pretty wide margin. The real answer

could just as likely be 34%, or 46%, or any other number in

between.

The best estimate of the sample is that 40% of the

population saw the commercials.
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Choosing Sample Sizes note that smaller margin of error

is achieved with larger values of n

margin of error = d =
1:96

2
p
n

n 100 1000 10000 100000

d 0.098 0.0309903 0.0098 0.00309903

A Problem:

given the margin of error d,

compute the smallest n

needed to achieve d
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Theorem 5.3.2

Let X=n be the estimator for p in binomial dist.

For X=n to have at least 100(1� �)% prob.

of being within a distance d of p,

the sample size should be no smaller than

n =
z2
�=2

4 d2

Proof: Given in class.
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Example 5.3.4 The proportion of children in the state, ages

0 to 14, who are lacking polio ummunization is unknown.

We wish to know how big a sample n to take to have at

least a 98% probability of being within 0.05 of the true

proportion p.

ANSWER: In this case,

100(1� �) = 98

hence

� = 0:02 and z�=2 = 2:33

By theorem 2.3.2, n =
z2�=2
4 d2 =

(2:33)2

4(0:05)2
= 543
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COMMENT:

The number given in Theorem 5.3.2 is a conservative

estimate. It can be lowered if additional information is

available. In this case we may use the formula

n =
z2�=2 p (1� p)

d2

For example, suppose that in the previous example it is

known before taking the sample that at least 80% of the

children have been properly immunized. Then no more than

20% have not been properly immunized. Then

n =
z2�=2 p (1� p)

d2
=

(2:33)2

(0:05)2
(0:20)(0:80) = 348

This is a significant reduction from the previous result (543).
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Comment: Binomial or Hypergeometric? Strictly

speaking, samples from surveys are drawing without

replacement, is a hypergeometric process, not binomial!

However, it is ok to use the geometric model. REASONS:

� (I) E[X=n] is same for both hypergeometric and binomial

models.

� (II) If X is binomial, then V ar(X=n) = p(1�p)
n

, and if X is

hypergeometric and N=total population,

V ar(X=n) =
p(1� p)

n
� N � n

N � 1

Note that

N � n

N � 1
� 1 if N is much larger than n
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