
MTH 142 Practice Problems for Exam 3 -Spring 2004

Last changed: April 1, 2004, 9:00 a.m

Sections 9.1, 9.2, 9.3, 9.4, 10.1, 10.2, 10.3, 10.4, 10.5

1. Obtain the first three nonzero terms of the Taylor series of f(x) =
√

x about 4.

2. Obtain P3(x) = the Taylor polynomial of order 3 of tan x about a = π/4

3. Calculate the radius of convergence of the power series
∞∑

n=0

n3n(x− 2)n.

4. Given that R = 2 is the radius of convergence of the series
∞∑

n=1

1

n22n
(x + 1)n, find the

interval of convergence (include endpoint analysis).

5. Calculate the radius of convergence of the power series
∞∑

n=0

n + 1

n + 3
xn.

6. Given that R = 1 is the radius of convergence of the series
∞∑

n=1

n

n2 + 1
xn, find the interval

of convergence (include endpoint analysis).

7. A certain amount of fresh water shrimp is placed in a tank together with 2 lbs. of food,
at 12:00 noon on January 1st, and 2 lbs. of food are added to the tank at noontime every
day after Jan 1. After every 24 hours, 15% of the food either decomposes or is eaten.

a) How much food is in the tank right after 12:00 noon on January 20 th? Give details,
and explain how you arrived at your answer.

b) In the long run, how much food is in the tank right after noontime? (Section 9.1)

8. The degree 2 Taylor polynomial approximation of f(x) = ln(1+x) for x near 0 is P2(x) =
x− 1

2
x2. We wish to approximate ln(1.5) by P2(x).

a) What should x be? What is the error? (use your calculator)

b) Find a bound for the error using the formula studied in class.

9. a) Use the method of substitution to find the first 4 nonzero terms of the Taylor series of
the function f(x) = 1√

1+x2 about x = 0.

b) Use series to answer the following question: For values of x that are close to 0, which
function is larger, cos(x) or 1√

1+x2 ?

10. Calculate the order 3 Fourier polynomial of the 2π periodic function given on [−π, π) by

f(t) =

{
−0.5 if − π ≤ t < 0
1 if 0 ≤ t < π



11. Calculate the order 3 Fourier polynomial of the function given on [−π, π) by f(t) = 3t.

Use the suggested method to determine if the series converges

12.
∞∑

n=2

n2

1 + n3
(a) Comparison Test. (b) Integral Test.

13.
∞∑

n=1

1 +
1

n
(a) comparison test. (b) integral test

14.
∞∑

n=3

(−2)n+1

πn
(a) Geometric series. (b) alternating series test. (c) ratio test.



SOLUTION MTH142 Practice Problems for Exam 2

1.

T (x) = 2 +
1

4
(x− 4)− 1

64
(x− 4)2 +

1

512
(x− 4)3 + · · ·

2.

P3(x) = 1 + 2(x− π

4
) + 2(x− π

4
)2 +

8

3
(x− π

4
)3

3. Using the ratio test we have

L = lim
n→∞

|an+1|
|an|

= lim
n→∞

∣∣∣∣∣(n + 1)3n+1(x− 2)n+1

n3n(x− 2)n

∣∣∣∣∣ = lim
n→∞

(n + 1)3|x− 2|
n

= 3|x− 2|

Now L < 1 when 3|x− 2| < 1, that is, |x− 2| < 1
3
. Then the radius of convergence is 1

3
.

4. Given that R = 2 is the radius of convergence, we note that the “base point” is a =
−1, hence the interval of convergence goes from -3 to 1. We now analyze convergence

at the endpoints. (a) Substituting x = −3 into
∞∑

n=0

1

n22n
(x + 1)n, we have the series

∞∑
n=1

1

n22n
(−2)n =

∞∑
n=1

(−1)n

n2
The absolute convergence test guarantees the convergence

of the series provided the series
∑∞

n=1
1
n2 converges, which does converge (p-series, with

p = 2). Hence x = −3 belongs to the interval of convergence. (b) Now substitute x = 1

into
∞∑

n=0

1

n22n
(x + 1)n, to obtain the series

∞∑
n=1

1

n22n
(2)n =

∞∑
n=1

1

n2
which converges (p = 2

again). Conclusion: the interval of convergence is −3 ≤ x ≤ 1 (or, in interval notation,
[−3, 1].)

5. Using the ratio test we have

L = lim
n→∞

|an+1|
|an|

= lim
n→∞

∣∣∣∣∣
n+2
n+4

xn+1

n+1
n+3

xn

∣∣∣∣∣ = lim
n→∞

(n + 2)(n + 3)|x|
(n + 1)(n + 4)

= lim
n→∞

(n2 + 5n + 6)|x|
n2 + 5n + 4

= 1|x|

Now L < 1 when |x| < 1. Then the radius of convergence is 1.

6. Given that R = 1 is the radius of convergence, we note that the “base point” is a = 0, hence
the interval of convergence goes from -1 to 1. We now analyze convergence at the endpoints.

Substituting x = −1 into
∞∑

n=0

n

n2 + 1
xn, we obtain the series

∞∑
n=1

n

n2 + 1
(−1)n which is an

alternating series. Since 1
12+1

≥ 2
22+1

≥ 3
32+1

≥ · · · and also limn→∞
n

n2+1
= 0, the series

converges. Therefore x = −1 is part of the interval of convergence. To test the other

endpoint, substitute x = 1 into the power series to obtain
∞∑

n=1

n

n2 + 1
(1)n =

∞∑
n=1

n

n2 + 1
This is a divergent series, since f(x) = x

x2+1
is decreasing and positive, we may apply the

integral test for series: we get:
∫∞
1

x
x2+1

dx = limb→∞
∫ b
1

x
x2+1

dx = limb→∞

∣∣∣1
2
ln |x2 + 1|

∣∣∣b
1

=

limb→∞
1
2
ln |b2+1|− 1

2
ln |2| = ∞ Therefore x = 1 is not part of the interval of convergence.

We conclude that the interval of converge is −1 ≤ x < 1, or in interval notation, [−1, 1).



7. The following table is helpful:

day amount right after 12:00 noon

Jan 1 2

Jan 2 2 + (0.85) 2

Jan 3 2 + (0.85) 2 + (0.85)2 2

Jan 4 2 + (0.85) 2 + (0.85)2 2 + (0.85)3 2

...
...

Jan 20 2 + (0.85) 2 + (0.85)2 2 + · · ·+ (0.85)19 2

Then, the amount right after noontime on January 20th is (note that there are 20 terms
in the left-hand-side of equation):

2 + (0.85) 2 + (0.85)2 2 + · · ·+ (0.85)19 2 =
2(1− (0.85)20)

1− 0.85
≈ 12.8165

In the long run, the amount of food after noontime is 2
1−0.85

≈ 13.3333

8. a) Take x = 0.5, so the error is E = f(0.5)− P2(0.5) = 0.4055− 0.3750 = 0.0305

b) The function |f (3)(t)| = |2/(1 + t)3| attains its maximum in the interval 0 ≤ t ≤ 0.5 at
t = 0. The maximum is M = |f (3)(0)| = 2. The error bound when approximating f(0.5)

by P2(0.5) is |f(0.5− P2(0.5)| ≤ M (0.5)3

3!
≈ 0.04166

9. a) Begin from the binomial series with exponent p = −1/2:

(1+y)−1/2 = 1+
−1

2
y+

−1
2

(−1
2
− 1)

2!
y2+

−1
2

(−1
2
− 1)(−1

2
− 2)

3!
y3+· · · = 1−y

2
+

3 y2

8
−5 y3

16
+· · · , −1 < y < 1.

Substitute y = t2 to obtain

1√
1 + t2

= 1− t2

2
+

3 t4

8
− 5 t6

16
+ · · ·

The expansion given above is valid on −1 < t < 1.

b) Since cos(t) = 1− t2

2
+ t4

24
− t6

720
+ · · · and 1√

1+t2
= 1− t2

2
+ 3 t4

8
− 5 t6

16
+ · · · we see that

cos(t) < 1√
1+t2

. Reason: in the series expansions, the first terms that are different are the

coefficients of t2. Note that the coefficient of t2 in the expansion of cos(t) is smaller than
the coefficient of t2 in the expansion of 1√

1+t2
. (For small t, smaller powers dominate).

10. Short answer: F3(x) = 1
4

+ 3
π

sin(t) + 1
π

sin(3t).

11. Short answer: F3(t) = 6 sin(t)− 3 sin(2t) + 2 sin(3t)



12. (a) Comparison test: Note that n2

1+n3 behaves like 1
n

when n is large, so we suspect that
the series diverges. The following inequalities are clearly valid:

0 ≤ n2

n3 + n3
≤ n2

1 + n3
, n = 2, 3, . . .

The term in the center simplifies to 1
2n

. Since
∑∞

n=2
1
2n

diverges, so does
∑∞

n=2
n2

1+n3 .

(b) Integral test: Set f(x) = x2

1+x3 for x ≥ 2. A plot of f(x) confirms that it is decreasing

and positive for 2 ≤ x ≤ ∞ as required by the test. Now
∫∞
2 f(x)dx = limb→∞

∫ b
2

x2

1+x3 dx =

limb→∞ ln |1 + x3|b2 = limb→∞
1
3
ln |1 + b3| − 1

3
ln 9 = ∞ Therefore, the series diverges too.

13. (a) Comparison test: Clearly,

0 ≤ 1 ≤ 1 +
1

n
, n = 1, 2, . . .

Since
∑∞

n=1 1 is divergent, so is our original series.

(b) Integral test: set f(x) = 1+1/x. Clearly f(x) is decreasing and positive on 1 ≤ x ≤ ∞
as required by the integral test. Now∫∞
1 (1+1/x)dx = lim

b→∞

∫ b

1
(1+1/x)dx = lim

b→∞
x+ln(x)|b1 = lim

b→∞
(b+ln(b))− (1+ln(1)) = ∞.

Since the integral diverges, the series diverges too.

14. (a) Geometric series:

∞∑
n=0

(−2)n+1

πn
=

∞∑
n=0

−2
(−2

π

)n

= a convergent geometric series,since |x| = | − 2/π| < 1

(b) Alternating series test: Since
∑∞

n=0
(−2)n+1

πn =
∑∞

n=0(−1)n+1 (2)n+1

πn the series is of the
alternating (sign) type. To apply the test we must first check two things. The first is,

21

π0
≥ 22

π1
≥ 23

π2
≥ · · ·

and this is clearly true. Also, we must check that

lim
n→∞

(2)n+1

πn
= 0

This is clearly true once we rewrite the limit in this form:

lim
n→∞

2
(

2

π

)n

= 0

(reason: 2/π is less than 1, so raising this to a large power produces a small number).
Because the two conditions to apply the test are satisfied, we have that, by the alternating
series test, the series is convergent.

(c) Ratio test:

L = lim
n→∞

|an+1|
|an|

= lim
n→∞

∣∣∣∣∣∣
(−2)n+2

πn+1

(−2)n+1

πn

∣∣∣∣∣∣ = lim
n→∞

∣∣∣∣∣ (−1)n+22n+2πn

(−1)n+12n+1πn+1

∣∣∣∣∣ = lim
n→∞

2

π
=

2

π
≈ 0.6366

Since L < 1, the series converges.


