MTH 244 - Additional Problems for §1.4 Section 1 (Merino) and section 3 (Dobrushkin) - January 2003

1. Find the general solution of the following linear differential equations with constant coefficients (Recall that $\sinh x = 0.5 e^x - 0.5 e^{-x}$ and $\cosh x = 0.5 e^x + 0.5 e^{-x}$).

a) $y' + 4y = 17 \sin x$,	i) $y' + 4y = 2e^{-2x}$,
b) $y' + 4y = e^{-4x}$,	j) $y' - 2y = 4$,
c) $y' - 2y = 2 + 4x$,	k) $y' - 2y = 3e^{-x}$,
d) $y' - 2y = e^{2x}$,	l) $y' - 2y = 5 \sin x$,
e) $y' + 2y = 4$,	m) $y' + 2y = 4 e^{2x}$,
f) $y' + 2y = e^{-2x}$,	n) $y' + 2y = 3 \cosh x$,
g) $y' + 2y = 3 \sinh x$,	o) $y' - y = 4 \sinh x$,
h) $y' - y = 4 \cosh x$,	p) $y' = 2y + x^2 + 3$.

- 2. Find the general solution of the following linear differential equations with variable coefficients
 - a) y' + xy = x; b) $xy' + (3x+1)y = e^{-3x}$; c) $x^2 + xy = 1$; d) xy' + (2x+1)y = 4x.
- 3. Find the general solution of the given differential equation
 - a) $x y' = y + x^2 e^x$; b) $y' = (y - 1) \tan x$; c) y' + 2x y = 4x; d) $(1 + x) y' = xy + x^2$.
- 4. Solve the given initial value problems.

a)
$$y' + 2y = 10$$
, $y(0) = 8$;
b) $y' = y + 6x^2$, $y(0) = -2$;
c) $x^2y' + 2xy - x + 1 = 0$, $y(1) = 0$;
d) $xy' = y + 2x^2$, $y(5) = 1$.

5. Find a continuous solution of the following Cauchy problems:

(a)
$$y' + 2y = f(x)$$
, $y(0) = 0$; (b) $y' + y = f(x)$, $y(0) = 0$,

where

$$f(x) = \begin{cases} 1, & 0 \le x \le 3; \\ 0, & x > 1. \end{cases}$$

- 6. Which nonhomogeneous linear ordinary differential equations of first order are separable?
- 7. One of the main contaminants of nuclear accident at Chernobyl is strontium-90, which decays at a constant rate of approximately 2.47% per year. What percent of the original strontium-90 would still remain after 100 years?
- 8. In an *RL*-series circuit it is given that $L = 1 + t^2$ henries, R = -t ohms, V(t) = t, and I(0) = 1 amperes. Compute the value of the current at any time.
- 9. In an *RL*-series circuit it is given that L = t henries, R = 2t + 1 ohms, V(t) = 4t, and I(1) = 2 amperes. Compute the value of the current at any time.
- 10. Find charge in a simple *RC*-series circuit with electro-motive force E(t) = t volts. It is given that R = t ohms, $C = (1 + t)^{-1}$ farads, and Q(1) = 1 coulomb.

Short Answers to Some Problems

1.

(1a)
$$y = C e^{-4x} + 4 \sin x - \cos x$$

(1b) $y = C e^{-4x} + x e^{-4x}$
(1c) $y = C e^{2x} - 2 - 2x$
(1d) $y = C e^{2x} + x e^{2x}$
(1e) $y = C e^{-2x} + 2$
(1f) $y = C e^{-2x} + x e^{-2x}$
(1g) $y = C e^{-2x} - 2 \sinh x - \cosh x$
(1h) $y = C e^x + 2x e^x - e^{-x}$

2.

a)
$$\mu(x) = e^{-x^2/2}, y = 1 + c e^{-x^2/2}$$

b) $\mu(x) = e^{3x}, y(x) = e^{-3x} + \frac{C}{x} e^{-3x}$

3. a)
$$y = Cx + x(x-1)e^x$$

b) $y(x) = 1 + C/\cos x$

4. a)
$$y = 5 + C e^{-2x}, C = 3$$

b) $y = 10 2^x - 6(x^2 + 2x + 2)$

(1i)
$$y = C e^{-4x} + e^{-2x}$$

(1j) $y = C e^{2x} - 2$
(1k) $y = C e^{2x} - e^{-x}$
(1l) $y = C e^{2x} - e^{-2x} (2 \sin x + \cos x)$
(1m) $y = C e^{-2x} + e^{2x}$
(1n) $y = C e^{-2x} - \sinh x + 2 \cosh x$
(1o) $y = C e^x + 2x e^x + e^{-x}$
(1p) $y = C e^{2x} - \frac{1}{4}(7 + 2x + 2x^2)$

c)
$$\mu(x) = x^{-1}$$
, $xy = \ln |x| + C$
d) $y = \frac{C}{x} e^{-2x} + 2 - \frac{1}{x}$
c) $y(x) = (2x^2 + C) e^{-x^2}$
d) $y = \frac{1}{1+x} (Ce^x - 2 - 2x - x^2)$
c) $y = \frac{1}{2} - \frac{1}{x} + \frac{1}{2x^2}$
d) $y = 2x^2 + \frac{49}{5}x$