Lecture 7

Counting Zeros and the Open Mapping Theorem

- Counting Zeros of an analytic function
- Counting zeros II
- Counting solutions to f(z) = b
- Number of solutions to f(z) = b is "stable"
- Open Mapping Theorem
- Meromorphic functions and the argument principle

Counting Zeros of an analytic function

Theorem 16 Let f(z) be analytic in an open set G and such that

$$f(z) = (z - a_k) \cdots (z - a_n)g(z) =: p(z)g(z)$$

where $g(z) \neq 0$ in G. If $\gamma \sim 0$ in G and $a_k \notin \{\gamma\}$ for $k = 1, \ldots, n$, then

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{k=1}^{n} \operatorname{wind}(\gamma; a_k)$$

Proof. We have,

$$\frac{f'(z)}{f(z)} = (\Sigma_{k=1}^n \times_{j \neq k} (z - a_j)) g(z) + p(z)g'(z)
= p(z)g(z) \left(\Sigma_{k=1}^n \frac{1}{z - a_k}\right) + p(z)g'(z)
= f(z) \left(\Sigma_{k=1}^n \frac{1}{z - a_k}\right) + p(z)g'(z)$$

Since γ is contractible to a point in G ($\gamma \sim 0$) and g'/g is analytic on G, we may apply Cauchy's theorem to obtain

$$\int_{\gamma} rac{g'(z)}{g(z)} dz = 0$$

Hence,

$$\int_{\gamma} \frac{f'(z)}{f(z)} dz = \int_{\gamma} \sum_{k=1}^{n} \frac{n}{z - a_{k}} dz + \int_{\gamma} \frac{g'(z)}{g(z)} dz$$
$$= \sum_{k=1}^{n} 2\pi i \text{wind}(\gamma; a_{k}) + 0$$

Counting zeros II

Consider a closed curve γ enclosing a connected, simply connected open set Δ . If γ is oriented positively (counterclockwise), then we have,

$$\mathsf{wind}(\gamma,a) = \left\{ \begin{aligned} 1 & \text{ if } a \in \Delta \\ 0 & \text{ if } a \not\in \Delta \end{aligned} \right.$$

Then,

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{k=1}^{n} \operatorname{wind}(\gamma; a_k)$$

= Number of zeros of f in Δ

Counting solutions to $f(z) = \alpha$

Corollary 8 Let f and γ be as in the preceding theorem, except that a_1, \ldots, a_n are the points in G that satisfy the equation $f(z) = \alpha$. Then,

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z) - \alpha} dz = \sum_{k=1}^{n} \operatorname{wind}(\gamma; a_k)$$

In particular, if γ is a simple closed curve oriented positively and that encloses a connected, simply connected set, then

 $\frac{1}{2\pi i}\int_{\gamma}\frac{f'(z)}{f(z)-\alpha}dz=\text{No. of solutions of }f(z)=\alpha \text{ in }\Delta$

Number of solutions to f(z) = b is "stable"

Let γ be a closed curve that bounds a region G that is simply connected, and let f(z) be analytic on a set that includes as subsets G and $\{\gamma\}$. Then $\sigma = f o \gamma$ is a curve in the complex plane, and we have,

wind
$$(\sigma, b) = \frac{1}{2\pi i} \int_{\sigma} \frac{dw}{w-b} = \frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)-b} dz$$

= No. solns. in G of $f(z) = b$

The path of σ divides up the complex plane into connected components of $\mathbf{C} - \{\sigma\}$. Each component consists of points b so that the number of solutions in G of f(z) = b is constant throughout the component. See figure.

Open Mapping Theorem

Theorem 17 Let G be a region and suppose that f(z) is a nonconstant analytic function on G. Then, for any open set $H \subset G$, the set f(H) is open.

Proof. We first prove that for any disk $B(a, \epsilon) \subset G$, the set $f(B(a, \epsilon))$ contains an open disk $B(f(a), \delta)$. Once this is proved, the conclusion of the theorem follows from the fact that the union of such $B(f(a), \delta)$ disks is precisely f(H).

We have that if γ is a circle with radius ϵ traversed counterclockwise once , then

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z) - f(a)} dz = n \ge 1$$

Now f(a) belongs to an open connected component U of $C - \{f(\gamma)\}$. We may choose $\delta > 0$ such that $B(f(a), \delta) \subset U$. Then,

$$z \in \{\gamma\} \text{ and } w \in B(f(a),\delta) \Rightarrow f(z) - w \neq 0$$

 and

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z) - w} dz = n \ge 1 \quad \text{for all } w \in B(f(a), \delta)$$

That is, f(z) = w has $n \ge 1$ solutions for each $w \in B(f(a), \delta)$.

Meromorphic functions and the Argument Principle

Definition 14 If G is an open set in **C** and if f(z) is a function analytic on G except for poles, we say that f(z) is meromorphic on G.

Theorem 18 Let f(z) be meromorphic on G open with zeros z_1, \ldots, z_n and poles p_1, \ldots, p_m , counted according to multiplicity. Let γ be a curve in G such that $\gamma \sim 0$ and $z_\ell \notin \{\gamma\}$, $p_\ell \notin \{\gamma\}$. Then,

$$\frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{\ell=1}^{n} \operatorname{wind}(\gamma; z_{\ell}) - \sum_{\ell=1}^{m} \operatorname{wind}(\gamma; p_{\ell})$$

Proof. If f(z) has a zero of order m at z = a, then we may write $f(z) = (z - a)^m g(z)$ where $g(z) \neq a$ and g(z) is analytic in a neighborhood of z = a. Then,

$$\frac{f'(z)}{f(z)} = \frac{m}{z-a} + \frac{g'(z)}{g(z)}$$
(1)

and $\frac{g'(z)}{g(z)}$ is analytic near z = a. Now if f(z) has a pole of order m at z = a, then $f(z) = (z - a)^{-m}g(z)$ where $g(z) \neq a$ and g(z) is analytic in a neighborhood of z = a. Then,

$$\frac{f'(z)}{f(z)} = -\frac{m}{z-a} + \frac{g'(z)}{g(z)}$$
(2)

and $\frac{g'(z)}{g(z)}$ is analytic near z = a. In the general case where f(z) has poles and zeros, we have that by applying (1) and (2) that

$$\frac{f'(z)}{f(z)} = \sum_{k=1}^{n} \frac{1}{z - z_k} - \sum_{k=1}^{m} \frac{1}{z - p_k} + \frac{g'(z)}{g(z)}$$

Note that g(z) is analytic and does not vanish on G, so $\frac{g'(z)}{g(z)}$ is also analytic. Integrate along γ both sides of (??) and apply Cauchy's theorem to get

$$\int_{\gamma} \frac{g'(z)}{g(z)} dz = 0$$

and to obtain the conclusion of the theorem.