Math 362
 Practice Exam I

1. Find the Cartesian and polar form of the reciprocal to the complex number $z=3-4 i$.

Solution: $\frac{1}{3-4 i}=\frac{3+4 i}{25}=\frac{1}{5} e^{i \theta}$, where $\theta=\arctan \frac{4}{3}$.
2. Find all cubic roots (in Cartesian and polar form) of $z=8 i$.

Solution: $\frac{1}{3-4 i}=\frac{3+4 i}{25}=\frac{1}{5} e^{i \theta}$, where $\theta=\arctan \frac{4}{3}$.
3. What is the polar form for $16-2 i$? Find all values of $\ln (16-2 i)$ and indicate the principal value Ln (16-2i).

Solution: $16.1245(\cos (-0.1244)+i \sin (-0.1244)$.
4. What is the standard form of the complex number $-13.5(\cos (0.58)+i \sin (0.58))$? Solution: - 11.2922-7.3983i.
5. Find all the roots of $\sqrt[4]{-5}$.

Solution: $1.0574+1.0754 i,-1.0574+1.0754 i, 1.0574-1.0754 i,-1.0574-1.0754 i$.
6. Given $z=1-2 i$, what is e^{z} ?

Solution: $e(\cos (-2)+i \sin (-2))$.
7. Find all values of $(-2 i)^{-i}$ and indicate the principal value.

Solution: $\exp (-3 P i / 2-2 n P i) . \exp (I \ln 2), n$ ranges over all integers, $\exp (3 P i / 2) \exp (I \ln 2)$
8. For the matrix

$$
A=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right]
$$

find A^{2}, A^{3}, A^{4}. Do you see a pattern?

Solution:

$$
A^{2}=\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right], A^{3}=\left[\begin{array}{lll}
2 & 3 & 3 \\
3 & 2 & 3 \\
3 & 3 & 2
\end{array}\right], A^{4}=\left[\begin{array}{lll}
6 & 5 & 5 \\
5 & 6 & 5 \\
5 & 5 & 6
\end{array}\right] .
$$

9. Solve the system of algebraic equations by Gauss elimination.

$$
\left\{\begin{array}{rl}
x+3 y-4 z & =-2 \\
-2 x-y+2 z & =6 \\
4 x-6 y+z & =9
\end{array} .\right.
$$

10. Use Gaussian elimination to obtain the solution of the following system of algebraic equations:

Solution:

$$
\left\{\begin{array}{c}
2 x+5 y+3 z=1 \\
-x+2 y+z=2 \\
x+y+z=0 \\
x=-1, y=0, z=1 .
\end{array}\right.
$$

11. Rewrite the following system of algebraic equations

$$
\left\{\begin{array}{c}
x-2 y+2 z=-6 \\
-2 x+y-2 z=0 \\
2 x+2 y+z=3
\end{array}\right.
$$

in the matrix form $A x=b$ and solve it by Gaussian elimination.
Solution: $\quad x=8, y=-2, z=-9$
12. Write the following system in matrix form.

$$
x+y+z=1, x+2 x+3 z=2, y+z=3
$$

What are the coefficient matrix A and the augmented matrix \bar{A} ? What are their ranks? Solve this system.

Solution:

$$
\bar{A}=\left[\begin{array}{lllll}
1 & 1 & 1 & 1 \\
1 & 2 & 3 & 2 \\
0 & 1 & 1 & 2
\end{array}\right], A^{-1}=\left[\begin{array}{ccc}
1 & 0 & -1 \\
1 & -1 & 2 \\
-1 & 1 & -1
\end{array}\right], x=-2, y=5, z=-2 . \operatorname{Rank} \mathrm{A}=\operatorname{Rank} \bar{A}=3
$$

13. For the following linear system determine all values of a for which the resulting linear system has (a) no solutions; (b) a unique solution; (c) infinitely many solutions.

$$
x+y+z=2,2 x+3 x+2 z=5,2 x+3 y+\left(a^{2}-1\right) z=a+1 / .
$$

Solution: (a) $a= \pm \sqrt{3}$; (b) $a \neq \pm \sqrt{3}$; (c) There is no value of a such that this system has infinitely many solutions.
14. Given the following matrices,

$$
A=\left[\begin{array}{cc}
4 & -12 \\
1 & -3 \\
-3 & 9
\end{array}\right], B=\left[\begin{array}{cc}
2 & 3 \\
-4 & -1
\end{array}\right]
$$

(a) Multiply matrices A and B to get $A B$.
(b) Does $B A$ exist? Justify your answer.
(c) Are the columns of matrix A linearly independent? Justify your answer.
(d) Find the rank of A, B, and $A B$.
(e) Do the columns of matrix A span \mathbf{R}^{3} ? Justify your answer.
(f) Do the columns of matrix B span \mathbf{R}^{2} ? Justify your answer.
(f) Do the columns of matrix B span \mathbf{R}^{2} ? Justify your answer.

Solution:

(a) $A B=\left[\begin{array}{cc}56 & 24 \\ 14 & 6 \\ -42 & -18\end{array}\right]$.
(b) No.
(c) No.
(d) $\operatorname{rank}(A)=1, \operatorname{rank}(B)=2, \operatorname{and} \operatorname{rank}(A B)=1$.
(e) No
(f) Yes
15. Mark each statement True or False.
(a)__In some cases, it is possible for six vectors to span \mathbf{R}^{5}.
(b)___If a system of linear equations has two different solutions, then it has infinitely many solutions.
(c)___The equation $A x=b$ is homogeneous if the zero vector is a solution.
(d)__If v_{1} and v_{2} span a plane in \mathbf{R}^{3} and if v_{3} is not in that plane, then $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a linearly independent set.

Solution:

(a) True.
(b) True.
(c) False.
(d) True.

