Math 362 Practice Exam I

1. Find the Cartesian and polar form of the reciprocal to the complex number z = 3 - 4i. **Solution:** $\frac{1}{3-4i} = \frac{3+4i}{25} = \frac{1}{5}e^{i\theta}$, where $\theta = \arctan\frac{4}{3}$.

2. Find all cubic roots (in Cartesian and polar form) of z = 8i. Solution: $\frac{1}{3-4i} = \frac{3+4i}{25} = \frac{1}{5}e^{i\theta}$, where $\theta = \arctan\frac{4}{3}$.

3. What is the polar form for 16 - 2i? Find all values of ln (16 -2i) and indicate the principal value Ln (16 -2i).

Solution: $16.1245(\cos(-0.1244) + i\sin(-0.1244))$.

4. What is the standard form of the complex number $-13.5(\cos(0.58) + i\sin(0.58))$? *Solution:* -11.2922 - 7.3983i.

5. Find all the roots of $\sqrt[4]{-5}$. Solution: 1.0574 + 1.0754i, -1.0574 + 1.0754i, 1.0574 - 1.0754i, -1.0574 - 1.0754i.

6. Given z = 1 - 2i, what is e^{z} ? *Solution:* $e(\cos(-2) + i\sin(-2))$.

7. Find all values of (-2i)⁻ⁱ and indicate the principal value. **Solution:** exp(-3Pi/2 -2nPi). exp(I ln 2), n ranges over all integers, exp(3Pi/2)exp(I ln 2)

8. For the matrix

			[0	1	1]				
			$A = \begin{bmatrix} 1 \end{bmatrix}$	0	1				
			1	1	0				
find A^2 , A^3 , A^4	. Do you s	ee a	a pattern?		-				
	[2	1	1] [2	3	3]	[6	5	5]	
Solution:	$A^2 = 1$	2	$1 , A^3 = 3$	2	$3 , A^4 =$	5	6	5	
	1	1	2] [3	3	2	5	5	6	

9. Solve the system of algebraic equations by Gauss elimination.

x	+	3y	-	4z	=	-2
-2x	-	у	+	2z	=	6.
4x	-	6 <i>y</i>	+	Ζ	=	9

$$x = 2, y = 0, z = 1.$$

Solution:

10. Use Gaussian elimination to obtain the solution of the following system of algebraic equations:

	$\int 2x$	+	5 <i>y</i>	+	3 <i>z</i>	=	1		
4	- x	+	2y	+	Z	=	2.		
	x	+	у	+	Ζ	=	0		
	x = -1, y = 0, z = 1.								

Solution:

11. Rewrite the following system of algebraic equations

x	-	2y	+	2z	=	-6
-2x	+	у	-	2 <i>z</i>	=	0
2x	+	2y	+	Z	=	3

in the matrix form Ax = b and solve it by Gaussian elimination. Solution: x = 8, y = -2, z = -9

12. Write the following system in matrix form.

x + y + z = 1, x + 2x + 3z = 2, y + z = 3.

What are the coefficient matrix A and the augmented matrix A? What are their ranks? Solve this system.

Solution:

 $\overline{A} = \begin{bmatrix} 1 & 1 & 1 & | & 1 \\ 1 & 2 & 3 & | & 2 \\ 0 & 1 & 1 & | & 3 \end{bmatrix}, A^{-1} = \begin{bmatrix} 1 & 0 & -1 \\ 1 & -1 & 2 \\ -1 & 1 & -1 \end{bmatrix}, x = -2, y = 5, z = -2. \text{ Rank } A = \text{Rank } \overline{A} = 3$

13. For the following linear system determine all values of *a* for which the resulting linear system has (a) no solutions; (b) a unique solution; (c) infinitely many solutions. x + y + z = 2, 2x + 3x + 2z = 5, $2x + 3y + (a^2 - 1)z = a + 1/$.

Solution: (a) $a = \pm \sqrt{3}$; (b) $a \neq \pm \sqrt{3}$; (c) There is no value of a such that this system has infinitely many solutions.

14. Given the following matrices,

$$A = \begin{bmatrix} 4 & -12 \\ 1 & -3 \\ -3 & 9 \end{bmatrix}, B = \begin{bmatrix} 2 & 3 \\ -4 & -1 \end{bmatrix}$$

- (a) Multiply matrices A and B to get AB.
- (b) Does *BA* exist? Justify your answer.
- (c) Are the columns of matrix *A* linearly independent? Justify your answer.
- (d) Find the rank of A, B, and AB.
- (e) Do the columns of matrix A span \mathbf{R}^3 ? Justify your answer.

- (f) Do the columns of matrix B span \mathbb{R}^2 ? Justify your answer.
- (f) Do the columns of matrix B span \mathbf{R}^2 ? Justify your answer.

Solution:

(a)
$$AB = \begin{bmatrix} 56 & 24 \\ 14 & 6 \\ -42 & -18 \end{bmatrix}$$
.
(b) No.
(c) No.
(d) $\operatorname{rank}(A) = 1$, $\operatorname{rank}(B) = 2$, and $\operatorname{rank}(AB) = 1$.

- (e) No
- (f) Yes

15. Mark each statement True or False.

- (a) In some cases, it is possible for six vectors to span \mathbf{R}^5 .
- (b) If a system of linear equations has two different solutions, then it has infinitely many solutions.
- (c) The equation Ax = b is homogeneous if the zero vector is a solution.
- (d) If v_1 and v_2 span a plane in \mathbb{R}^3 and if v_3 is not in that plane, then $\{v_1, v_2, v_3\}$ is a linearly independent set.

Solution:

- (a) True.
- **(b)** True.
- (c) False.
- (**d**) True.