2.3 Characterizations of Invertible Matrices

Theorem 8 (The Invertible Matrix Theorem)

Let \(A \) be a square \(n \times n \) matrix. The following statements are equivalent (i.e., for a given \(A \), they are either all true or all false).

- a. \(A \) is an invertible matrix.
- b. \(A \) is row equivalent to \(I_n \).
- c. \(A \) has \(n \) pivot positions.
- d. The equation \(Ax = 0 \) has only the trivial solution.
- e. The columns of \(A \) form a linearly independent set.
- f. The linear transformation \(x \rightarrow Ax \) is one-to-one.
- g. The equation \(Ax = b \) has at least one solution for each \(b \) in \(\mathbb{R}^n \).
- h. The columns of \(A \) span \(\mathbb{R}^n \).
- i. The linear transformation \(x \rightarrow Ax \) maps \(\mathbb{R}^n \) onto \(\mathbb{R}^n \).
- j. There is an \(n \times n \) matrix \(C \) such that \(CA = I_n \).
- k. There is an \(n \times n \) matrix \(D \) such that \(AD = I_n \).
- l. \(A^T \) is an invertible matrix.

EXAMPLE: Use the Invertible Matrix Theorem to determine if \(A \) is invertible, where

\[
A = \begin{bmatrix}
1 & -3 & 0 \\
-4 & 11 & 1 \\
2 & 7 & 3
\end{bmatrix}.
\]

Solution

\[
A = \begin{bmatrix}
1 & -3 & 0 \\
-4 & 11 & 1 \\
2 & 7 & 3
\end{bmatrix} \sim \cdots \sim \begin{bmatrix}
1 & -3 & 0 \\
0 & -1 & 1 \\
0 & 0 & 16
\end{bmatrix}
\]

3 pivot positions

Circle correct conclusion: Matrix \(A \) is / is not invertible.
EXAMPLE: Suppose H is a 5×5 matrix and suppose there is a vector v in \mathbb{R}^5 which is not a linear combination of the columns of H. What can you say about the number of solutions to $Hx = 0$?

Solution Since v in \mathbb{R}^5 is not a linear combination of the columns of H, the columns of H do not __________ \mathbb{R}^5.

So by the Invertible Matrix Theorem, $Hx = 0$ has __________________________.

Invertible Linear Transformations

For an invertible matrix A,

\[
A^{-1}A x = x \text{ for all } x \text{ in } \mathbb{R}^n \\
\text{and} \\
AA^{-1} x = x \text{ for all } x \text{ in } \mathbb{R}^n.
\]

Pictures:

A linear transformation $T : \mathbb{R}^n \rightarrow \mathbb{R}^n$ is said to be invertible if there exists a function $S : \mathbb{R}^n \rightarrow \mathbb{R}^n$ such that

\[
S(T(x)) = x \text{ for all } x \text{ in } \mathbb{R}^n \\
\text{and} \\
T(S(x)) = x \text{ for all } x \text{ in } \mathbb{R}^n.
\]

Theorem 9

Let $T : \mathbb{R}^n \rightarrow \mathbb{R}^n$ be a linear transformation and let A be the standard matrix for T. Then T is invertible if and only if A is an invertible matrix. In that case, the linear transformation S given by $S(x) = A^{-1}x$ is the unique function satisfying

\[
S(T(x)) = x \text{ for all } x \text{ in } \mathbb{R}^n \\
\text{and} \\
T(S(x)) = x \text{ for all } x \text{ in } \mathbb{R}^n.
\]