Worksheet #8
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the series Z - converges absolutely.
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Z% converges since it’s a p-series.
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Since Z(%) is a convergent geometric series,
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the series Zf— converges by the Comparison Test.
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Since - = |ﬁ| for all n > 1, the series z 2 converges absolutely.
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That is, %-32”“ is strictly increasing and has no upper bound
(exponential growth)

So, by the Ratio Test, Zz—n diverges.
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So, by the Alternating Series Test, z (:/1;)” converges.
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so the series z does not absolutely converge.
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So, the radius of convergence is 3.
Check the endpoints of (-1,5):

Zﬂ = Z% which converges (alternating harmonic series).
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Z% = Zﬁ which diverges.
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So the interval of convergence is [-1,5).
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So, the radius of convergence is 1.
Check the endpoints of (-1,1):

D n*(-1)" diverges. Y n’(1)" also diverges.
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So the interval of convergence is (-1,1).
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So the radius of convergence is infinite.
Thus, the interval of convergence is (—oo,0).
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