Worksheet #7

1. (a) 2, 5, 10, 17, 26, 37,

Recursive formula: $\begin{cases} s_1 = 2\\ s_n = s_{n-1} + (2n-1) & \text{for } n \ge 2 \end{cases}$

Explicit formula: $s_n = n^2 + 1$

(b)
$$1, -3, 5, -7, 9, -11, \ldots$$

Recursive formula: $\begin{cases} s_1 = 1 \\ s_n = (-1)^{n+1} \cdot (|s_{n-1}| + 2) & \text{for } n \ge 2 \end{cases}$

 $s_n =$

Explicit formula:

$$(-1)^{n+1} \cdot (2n-1)$$

2. (a) $a_n = (-.3)^n$. Then $\{a_n\}$ is a geometric sequence with ratio -0.3. This sequence converges and $\lim_{n \to \infty} a_n = 0$.

(b)
$$a_n = \frac{n}{10} + \frac{10}{n}$$
. Then the sequence $\{a_n\}$ diverges.

- (c) $a_n = \cos(\pi n)$. Then $\{a_n\} = -1, 1, -1, 1, -1, 1, ...$ So, $\{a_n\}$ diverges.
- (d) $a_n = \frac{2n+(-1)^n \cdot 5}{4n-(-1)^n \cdot 3}$. As *n* gets larger and larger, the value of $\frac{2n+(-1)^n \cdot 5}{4n-(-1)^n \cdot 3}$ gets closer and closer to the value of $\frac{2n}{4n}$. So, $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{2n+(-1)^n \cdot 5}{4n-(-1)^n \cdot 3} = \lim_{n \to \infty} \frac{2n}{4n} = \frac{1}{2}$.
- (e) $a_n = \frac{\sin n}{n}$. $-1 \le \sin n \le 1$ for every *n*. Thus, $\frac{-1}{n} \le \frac{\sin n}{n} \le \frac{1}{n}$ for every $n \ne 0$. Since $\lim_{n \to \infty} \frac{1}{n} = 0$, and $\lim_{n \to \infty} \frac{-1}{n} = 0$, the limit of $\frac{\sin n}{n}$ must also equal 0 (as $n \to \infty$).

3. (a)
$$\sum_{n=0}^{10} 7(3)^n = 7 \cdot \frac{1 - 3^{10+1}}{1 - 3} = 620,011$$

(b)

$$\sum_{n=2}^{5} 2(-4)^{n} = 2 \cdot \left(\sum_{n=0}^{5} (-4)^{n} - \sum_{n=0}^{1} (-4)^{n}\right) = 2 \cdot \left(\frac{1 - (-4)^{5+1}}{1 - (-4)} - \frac{1 - (-4)^{1+1}}{1 - (-4)}\right) = -1632$$

(c)
$$\sum_{n=0}^{\infty} z \cdot y^n$$
, $|y| < 1$. Since $|y| < 1$, $\sum_{n=0}^{\infty} z \cdot y^n = z \cdot \frac{1}{1-y} = \frac{z}{1-y}$.

(d)
$$\sum_{n=0}^{\infty} 3(4)^n$$
 diverges since $|4| \ge 1$.

4. (a)
$$\sum_{n=1}^{\infty} \frac{1}{e^n} = \sum_{n=1}^{\infty} \left(\frac{1}{e}\right)^n$$
. Since $\left|\frac{1}{e}\right| < 1$, this is a geometric series that will converge.
However, the instructions were to use the integral test.

$$\int_1^{\infty} \frac{1}{e^x} dx = \lim_{n \to \infty} \int_1^n e^{-x} dx = \lim_{n \to \infty} \left(-e^{-x} \left|\frac{x=n}{x=1}\right|\right) = \lim_{n \to \infty} \left(-e^{-n} + e^{-1}\right) = 0 + e^{-1} = \frac{1}{e}.$$
So the series $\sum_{n=1}^{\infty} \frac{1}{e^n}$ converges. In fact, $\sum_{n=1}^{\infty} \frac{1}{e^n} = \frac{1}{e-1}$.
(b) $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)}.$

$$\int_2^{\infty} \frac{1}{x(\ln x)} dx = \lim_{n \to \infty} \int_2^n \frac{1}{x(\ln x)} dx = \lim_{n \to \infty} \left(\ln\left(\ln\left(x\right)\right) \Big|_{x=2}^{x=n}\right) = \infty.$$

$$\int_{2} \frac{1}{x(\ln x)} dx = \lim_{n \to \infty} \int_{2} \frac{1}{x(\ln x)} dx = \lim_{n \to \infty} \left(\ln \left(\ln \left(x \right) \right) \right)$$

So the series $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)}$ diverges.

5.
$$\sum_{n=1}^{\infty} \frac{n}{n+1}$$
. Since $\lim_{n \to \infty} \frac{n}{n+1} = 1 \neq 0$, the series $\sum_{n=1}^{\infty} \frac{n}{n+1}$ must diverge.

for Dr. Comerford, MTH 142 Solutions by Chris Lynd