
Worksheet #7 

 

1. (a) 2, 5, 10, 17, 26, 37, ….. 
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(b) 1, –3, 5, –7, 9, –11, ….. 

 

Recursive formula: 
( ) ( )

1

1

1

1                                            

1 2    for 2
n

n n

s

s s n
+

−

=


= − ⋅ + ≥
 

 

Explicit formula: ( ) ( )
1

1 2 1
n

ns n
+

= − ⋅ −  

 

 

2. (a) ( ).3
n

na = − .  Then { }na  is a geometric sequence with ratio – 0.3. 

  This sequence converges and lim 0n
n

a
→∞

= . 

 

 (b) 10
10
n

n n
a = + .  Then the sequence { }na  diverges. 

 

 (c) ( )cosna nπ= .  Then { }na = –1, 1, –1, 1, –1, 1, ….. 

  So, { }na  diverges. 
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  However, the instructions were to use the integral test. 
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