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Abstract

The Lanczos method can be generalized to block form to compute
multiple eigenvalues without the need of any deflation techniques. The
block Lanczos method reduces a general sparse symmetric matrix to a
block tridiagonal matrix via a Gram-Schmidt process. During the iter-
ations of the block Lanczos method an off-diagonal block of the block
tridiagonal matrix may become singular, implying that the new set of
Lanczos vectors are linearly dependent on the previously generated vec-
tors. Unlike the single vector Lanczos method, this occurrence of linearly
dependent vectors may not imply an invariant subspace has been com-
puted. This difficulty of a singular off-diagonal block is easily overcome
in non-restarted block Lanczos methods, see Golub and Underwood [12],
and Ruhe [30]. The same schemes applied in non-restarted block Lanczos
methods can also be applied in restarted block Lanczos methods. This al-
lows the largest possible subspace to be built before restarting. However,
in some cases a modification of the restart vectors is required or a singu-
lar block will continue to reoccur. In this paper we examine the different
schemes mentioned in [12, 30] for overcoming a singular block for the
restarted block Lanczos methods, namely the restarted method reported
in [12] and the Implicitly Restarted Block Lanczos (IRBL) method devel-
oped by Baglama et al. [3]. Numerical examples are presented to illustrate
the different strategies discussed.

block Lanczos method, eigenvalues, implicit restarting, singular block, poly-
nomial acceleration.
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1 Introduction

The eigenvalue problem
Ax = λx,(1)

where A ∈ Rn×n is a large sparse symmetric matrix is an important com-
putational problem. The task of finding a few extreme eigenvalues and as-
sociated eigenvectors arises in many applications, such as in structural engi-
neering to determine vibrational frequencies, or in chemistry for the config-
urations of molecules. An impressive calculation by Lehoucq et al. [18] for
finding the vibrational states of a four-atom molecule required computing the
fifty-two smallest eigenvalues of a symmetric matrix on the order of 2 · 106.
A calculation involving multiple eigenvalues by Baglama et al. [3] required
computing eigenvectors associated with the smallest eigenvalues of a symmet-
ric matrix on the order of 3 · 105. The eigenvectors were then used to de-
termine solution paths of the minimal energy configuration of liquid crystals.
Eigenvalue problems are becoming larger and more complicated and the need
for robust and efficient algorithms has spurred considerable research aimed at
improving existing methods or at developing alternative methods; see, e.g.,
[1, 2, 3, 6, 9, 12, 14, 23, 22, 24, 26, 27, 28, 31, 33, 34, 35] and references
therein. Research has generated numerous public domain codes for finding a
few eigenvalues and associated eigenvectors of a large sparse symmetric matrix;
for instance, ARPACK developed by Lehoucq et al. [21], BLZPACK developed
by Marques [22], and LASO2 developed by Scott [32]. See [4] for a survey on
public domain codes. The key to developing robust and efficient public code
is the detail to implementation issues. The goal of this paper is to discuss the
implementation issue of encountering linearly dependent Lanczos vectors in the
restarted block Lanczos methods.

The Lanczos method [16] can be generalized to block form to compute mul-
tiple or close eigenvalues without the need of any deflation techniques. There
are many implementations of the block Lanczos method; see e.g., Chatelin [7],
Cullum and Willoughby [9], Golub and Underwood [12], Grimes et al. [14],
Parlett [26], Ruhe [30], Scott [32], and Ye [36]. All block methods generate an
orthonormal basis for the block Krylov subspace,

Kb
j(A, v1, . . . , vr) = span{v1, Av1, . . . , Aj−1v1,

v2, Av2, . . . , A
j−1v2,

...
vr, Avr, . . . , A

j−1vr},

(2)

where v1, v2, . . . , vr ∈ Rn.
Similarly to the basic Lanczos method, the basic block Lanczos method en-

counters the difficulties of a large storage requirement for the Krylov subspace
basis and the low accuracy of the computed approximate eigenvalues and eigen-
vectors due to loss of orthogonality. To overcome these difficulties one can
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periodically restart the block Lanczos method with starting vectors that have
strong components in the direction of the eigenvectors associated with the de-
sired eigenvalues. Golub and Underwood [12] suggest restarting with the desired
Ritz vectors. A generalization of the Implicitly Restarted Lanczos (IRL) method
described by Calvetti et al. [6] and Sorensen [34] to block form, the Implicitly
Restarted Block Lanczos (IRBL) method by Baglama et al. [3] can be regarded
as a curtailed block QR algorithm for the symmetric eigenvalue problem. The
IRBL method is an efficient method for restarting the block Lanczos algorithm.
It is well suited for the computation of multiple or very close eigenvalues and
requires very little storage requirement when both eigenvalues and associated
eigenvectors are required.

The block Lanczos methods introduce another difficulty, that is not present
in the single vector Lanczos methods. When a vector Alvi, l ≤ j − 1 and
1 ≤ i ≤ r, in (2) is a linear combination of the other Krylov vectors, this does
not necessarily imply that an invariant subspace has been found. It only implies
that no additional information can be obtained from Alvi and any A multiple
of Alvi. Therefore, a modification of the block Lanczos method is required to
continue to be able to build a basis. This is considered a favorable breakdown in
the single vector Lanczos case yielding an invariant subspace with eigenvalues
of the Lanczos matrix coinciding with eigenvalues of the matrix A, see [13, p.
478]. Breakdown due to linearly dependent Krylov vectors without converged
eigenvectors does not occur frequently. Grimes et al. [14] state that they have
never seen this breakdown occur in their code. However, this does not mean
that we should ignore it.

One way of handling a breakdown in a restarted block Lanczos method is to
stop the algorithm when the breakdown occurs, check if any eigenvectors have
converged, and modify the starting vectors by introducing a random vector.
However, this is not very advantageous in a restarted method since this will
produce a much smaller Krylov subspace for that iteration, yielding a poor
approximation for the next restart vectors. Also, the introduction of a random
vector causes undesired eigenvector components to be present, hence, slows
down convergence. Therefore, we suggest handling this breakdown as one would
in a non-restarted block Lanczos method, i.e., use a scheme that will allow the
restarted block Lanczos method to continue to build the Lanczos basis to the
set maximum size before restarting. This will allow the best approximation for
the next iteration.

In this paper, we will investigate two simple schemes for handling a break-
down. Both schemes will allow the Lanczos basis to be built to the user set
maximum size. Also, we will show when a random vector must be used to
replace a restart vector to avoid a reoccurrence of the breakdown.

This paper is organized as follows. In Section 2, we review a block Lanc-
zos method and describe the different strategies for overcoming the breakdown
in the non-restarted block Lanczos methods. Section 3 investigates the differ-
ent strategies for overcoming the breakdown for the restarted block Lanczos
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methods when restarting with Ritz vectors. In Section 4, we review the IRBL
method and investigate strategies for overcoming the breakdown when using
this method. Illustrative numerical examples are displayed in Section 5, and
concluding remarks are found in Section 6.

2 Block Lanczos Method

For this discussion we use a version of the block Lanczos method developed by
Ruhe [30] that yields an algorithm that is quite similar to the original Lanczos
algorithm. When the block size is equal to 1, Ruhe’s implementation coincides
with the usual Lanczos process. A particular advantage of the block Lanczos
algorithm is the possibility to multiply a group of vectors by a matrix A using
level 3 BLAS [10] matrix-matrix multiplication subroutines. Ruhe’s version
does not allow for the use of level 3 BLAS. However, this can be remedied by
performing r matrix-vector multiplications every r steps.

In Ruhe’s implementation, the vectors in the Krylov subspace bases gen-
erated are orthogonalized sequentially. This implementation is attractive for
this discussion, since the breakdown can be easily identified by computing the
Euclidean vector norm ‖ · ‖ of a single vector (see step 14) in Algorithm 2.

Block Lanczos (Ruhe’s Variant) Algorithm
1.) Choose r initial orthonormal vectors V1r = [v1, . . . , vr] and set {tij}mr

i,j=1 = 0.
2.) For j = r, r + 1, . . . ,mr do:
3.) k = j − r + 1
4.) Compute f1 = Avk

5.) For i = 1, k − 1 do:
6.) f1 = f1 − tikvi

7.) Enddo
8.) For i = k, . . . , j do:
9.) ti,k = fT

1 vi

10.) If i 6= k tk,i = ti,k
11.) f1 = f1 − tikvi

12.) Enddo
13.) If j < mr then
14.) tj+1,k = ‖f1‖
15.) vj+1 = f1

‖f1‖
16.) tk,j+1 = tj+1,k

17.) Endif
18.) Enddo
19.) For j = 2, . . . , r do:
20.) k = mr − r + j
21.) fj = Avk

22.) For i = 1, k − 1 do:
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23.) fj = fj − tikvi

24.) Enddo
25.) For i = k,mr do:
26.) ti,k = fT

j vi

27.) If i 6= k then tk,i = ti,k
28.) fj = fj − tikvi

29.) Enddo
30.) Enddo
31.) Set Fr = [f1, . . . , fr], Vmr = [v1, . . . , vmr], Tmr = {tij}mr

i,j=1.

An application of m steps of Algorithm 2 yields

AVmr = VmrTmr + FrE
T
r ,(2)

with V T
mrVmr = Im, V T

mrFr = 0, and

Tmr =



D1 BT
1 0

B1 D2 BT
2

B2 D3 BT
3

. . .
. . . . . . BT

m−1

0 Bm−1 Dm


,(3)

where Dj ∈ Rr×r are r × r blocks, and Bj ∈ Rr×r are upper triangular blocks.
The loss of orthogonality among the basis vectors is generally observed after

a number of iterations. This causes redundant copies of eigenpairs to emerge.
To secure the orthogonality of the basis vectors a reorthogonalization step is
performed when necessary. The remedies used to secure orthogonality in the
single vector Lanczos method can be used in Algorithm 2, see [25, 26] for a
discussion on maintaining orthogonality in the Lanczos methods. Results in
[5, 26, 29] show that at most one reorthogonalization is required.

The values tj+1,k = ‖f1‖, j = r, . . . ,mr − 1, k = 1, . . . ,mr − r (at step 14
in Algorithm 2) correspond to the diagonal elements in the off-diagonal blocks
B1, B2, . . . , Bm−1 in (3). Therefore, an off-diagonal block is singular if and only
if tj+1,k = ‖f1‖ = 0. This implies that the next Lanczos vector f1 becomes
linearly dependent on the previous j Lanczos vectors, v1, . . . , vj . Suppose ε is
suitably small. We say a breakdown occurs when r > 1 and

‖f1‖ < ε.(4)

This may or may not imply that an eigenvector has converged. This only implies
that no additional information can be obtained from Alvk, where 1 ≤ l ≤ m− 1
and any A multiple of Alvk.
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Algorithm 2 needs to be modified in order to handle the breakdown and
continue to build the Lanczos basis. There are two possible remedies when
‖f1‖ < ε and r > 1:

Option I
Set tk,j+1 = tj+1,k = 0 and generate a random unit vector f1, such that fT

1 vi =
0, for i = 1, . . . j. Then set vj+1 = f1/‖f1‖ and continue. That is, insert steps
14a− 14g into Algorithm 2.

Block Lanczos Algorithm With Option I
...
13.) If j < mr then
14.) tj+1,k = ‖f1‖

14a.) if ‖f1‖ < ε
14b.) Set tk,j+1 = tj+1,k = 0
14c.) Let f1 be a random vector
14d.) for i = 1, . . . , j do:
14e.) f1 = f1 − (fT

1 vi)vi

14f.) Enddo
14g.) Endif

15.) vj+1 = f1
‖f1‖

16.) tk,j+1 = tj+1,k

17.) Endif
...

Option II
Set tk,j+1 = tj+1,k = 0, reduce the block size and go to the next iteration. This
is the strategy that Ruhe suggested in [30] for the non-restarted block Lanczos
method. Termination occurs when r = 1 and ‖f1‖ < ε, and yields an invariant
subspace.
Insert steps 14a− 14g into Algorithm 2.

Block Lanczos Algorithm With Option II
...
13.) If j < mr then
14.) tj+1,k = ‖f1‖

14a.) if ‖f1‖ < ε
14b.) Set tk,j+1 = tj+1,k = 0
14c.) If r=1 Goto step 31.
14d.) r = r − 1
14e.) j = j − 1
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14f.) Goto step 17.
14g.) Endif

15.) vj+1 = f1
‖f1‖

16.) tk,j+1 = tj+1,k

17.) Endif
...

Both options I and II discard the vector f1. In Option I the vector is replaced
by a random vector (step 14c in Algorithm 2), and in Option II the reduction
of block size (step 14d in Algorithm 2), implies that vj+1 is replaced in the
next iteration. Both of these options can be implemented in the restarted block
Lanczos method so as to continue to build the Lanczos basis.

3 Restarted Block Lanczos Method

One method of restarting is with approximate Ritz vectors.

Restarted Block Lanczos Algorithm
1.) Let k be the number of desired eigenvalues.
2.) Choose r initial orthonormal vectors V1r = [v1, . . . , vr].
3.) Choose m, the maximum number of block Lanczos steps.
4.) Compute AVmr = VmrTmr + FrE

T
r by Algorithm 2.

5.) Compute k eigenvalues and eigenvectors of Tmr; {θi, yi}r
i=1.

6.) Check convergence.
7.) Deflate any converged eigenvectors; stop if all eigenvalues have been found.
8.) Compute new starting vectors. V1r = [v1 = Vmry1, . . . , vr = Vmryr].
9.) Goto step 4.

Suppose a breakdown occurs during step 4 of Algorithm 3 and no eigenvec-
tors converged. If Option II was used to continue Algorithm 2, then in the next
iteration of Algorithm 3 a breakdown will occur again during step 4. This can
be illustrated as follows.

Let r be the block size and m the number of Lanczos steps to be applied.
Let

AVl = VlTl + Fr̂E
T
r̂(5)

be the block Lanczos decomposition and assume that a breakdown has occurred
and Option II was used during step 4 of Algorithm 3. Then r̂ < r, l ≤ mr,
Vl ∈ Rn×l and Tl ∈ Rl×l. Before the breakdown the block tridiagonal matrix in
the block Lanczos decomposition had bandwidth 2r + 1. After the breakdown,
Tl in (5) has bandwidth 2r̂ + 1.
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Compute new starting vectors V1r = [v+
1 = Vly1, . . . , v

+
r = Vlyr], where

{θi, yi}r
i=1 are r eigenpairs of Tl. Then

Av+
1 = AVly1 = (VlTl + Fr̂E

T
r̂ )y1 = θ1v

+
1 + Fr̂E

T
r̂ y1

Av+
2 = AVly2 = (VlTl + Fr̂E

T
r̂ )y2 = θ2v

+
2 + Fr̂E

T
r̂ y2

...
Av+

r = AVlyr = (VlTl + Fr̂E
T
r̂ )yr = θrv

+
r + Fr̂E

T
r̂ yr

(6)

and span{v+
1 , . . . , v

+
r , Av

+
1 , . . . , Av

+
r } ⊆ span {v+

1 , . . . , v
+
r , Fr̂E

T
r̂ }. The latter set

contains r + r̂ < 2r vectors. Thus, v+
1 , . . . , v

+
r , Av

+
1 , . . . , Av

+
r must be linearly

dependent and a breakdown in Algorithm 2 will occur when creating the first off-
diagonal block. Also, a similar argument applies if we were to stop Algorithm 2
when the breakdown occurs. However, if Option I is used to continue Algorithm
2, then the residual matrix Fr̂ in the Lanczos decomposition (5) will contain r
vectors instead of r̂ < r vectors. This will allow the next iteration of Algorithm
3 to continue, in general, without a breakdown. Therefore, we suggest using this
implementation to handle a breakdown in a restarted block Lanczos methods
which restarts with a combination of Ritz vectors. If no eigenvectors have
converged, this implementation does not require a modification to the starting
vectors.

However, neither Option I nor Option II can be implemented in the IRBL
method without replacing a restart vector with a random vector. This is shown
in the following section.

4 Implicitly Restarted Block Lanczos (IRBL) Method

We review the IRBL method presented in [3]. It generalizes the IRL method
discussed in [6, 34]. Let m steps of the block Lanczos method produce the block
Lanczos decomposition (2).

Let z ∈ R and determine the QR factorization Tmr − zImr = QR, where
Q,R ∈ Rmr×mr, QTQ = Imr, and R is upper triangular. We refer to z as a
shift. Multiplying equation (2) by Q from the right-hand side we obtain

A(VmrQ) = (VmrQ)(QTTmrQ) + FmrE
T
mrQ.(7)

Let T+
mr = QTTmrQ. Then T+

mr is a symmetric block tridiagonal matrix with
the same bandwidth as Tmr. The matrix Q in the QR factorization of Tmr −
zImr is a generalized upper Hessenberg matrix, whose lower triangular part has
bandwidth r. After applying the m− 1 shifts z1, z2, . . . , zm−1, we obtain

AV +
mr = V +

mrT
+
mr + FrE

T
r Q

+,(8)

where V +
mr = [v+

1 , . . . , v
+
mr] = VmrQ

+, Q+ = Q1 · · ·Qm−1, T+
mr = (Q+)TTmrQ

+,
and Qj denotes the orthogonal matrix associated with the shift zj . Introduce
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the partitioning

T+
mr =


T+

r BT
r 0 · · · 0

Br

0
... T+

mr−r

0

 ,(9)

where T+
r ∈ Rr×r, Br ∈ Rr×r is upper triangular, and T+

mr−r ∈ R(mr−r)×(mr−r).
Equate the first r columns on the right-hand side and left-hand side of (8). We
then obtain

AV +
r = V +

r T+
r + F+

r ,(10)

where V +
r = [v+

1 , v
+
2 , . . . , v

+
r ] and F+

r = [v+
r+1, . . . , v

+
2r]Br + FrE

T
r Q

+In×r. The
mth shift zm is applied according to

V ++
r = F+

r + V +
r (T+

r − zmIr).(11)

Introduce R̂ = (Rr
mR

r
m−1 . . . R

r
1)
−1, where Rr

j is the first r columns and r
rows of the upper triangular matrix Rj in the QR factorization of Tmr − zjI.
Then

V ++
r = ψm(A)VrR̂,(12)

where ψm is a polynomial of degree m with zeros z1, . . . , zm.
Formula (12) shows that we can multiply the initial matrix Vr for the block

Lanczos method by an accelerating polynomial in A of degree m without eval-
uating any matrix-vector products with the matrix A, in addition to those
matrix-vector products that were computed during m steps of the block Lanc-
zos method.

The choice of accelerating polynomial ψm, i.e., the choice of the shifts
z1, . . . , zm, is discussed in [3] and [19], see also [1, 2, 6, 34]. One seeks to
choose shifts zj so that the rangeV ++

r is in, or close to, an invariant subspace
of A associated with all or a subset of the desired eigenvalues of A.

Having computed V ++
r in the manner outlined, we orthonormalize the columns

of V ++
r , and denote the orthonormal matrix so obtained by Vr. The block Lanc-

zos process is now restarted with the initial matrix Vr.
If a breakdown occurs and if Option I or Option II are used to continue

Algorithm 2, then a breakdown will occur in the next iteration when restarting
with the matrix V ++

r . Suppose Ai+1vk, 1 ≤ k ≤ r, i + 1 ≤ m, is a linear
combination of the vectors in the Krylov subspace, i.e., Ai+1vk =

∑p
n=1 αnA

lvj ,
0 ≤ l ≤ i, and 1 ≤ j ≤ r. Multiply equation (12) from the right-hand side by
the axis vector ek and from the left-hand side by Ai+1,

Ai+1v++
k = Ai+1ψm(A)VrR̂ek = Ai+1ψm(A)[r1kv1 + . . .+ rkkvk](13)
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where [r1k, . . . , rkk]T is the kth column of R̂ and

Ai+1v++
k = ψm(A)[Ai+1(r1kv1 + . . .+ rk−1kvk−1) + rkkA

i+1vk]

= ψm(A)[r1kA
i+1v1 + . . .+ rk−1kA

i+1vk−1 + rkk

∑p
n=1 αnA

lvj ]

= Ai+1[r1kψm(A)v1+. . .+rk−1kψm(A)vk−1]+rkk

∑p
n=1 αnA

lψm(A)vj .

Notice that if Option I is used, then the random vector introduced at step 14c
in Algorithm 2 or any A multiple of the random vector does not appear in the
linear combination of Ai+1vk, or in Ai+1v++

k . Also, it follows from (12) that

v++
1 = ψm(A)r11v1
v++
2 = ψm(A)[r12v1 + r22v2]

...
...

v++
r = ψm(A)[r1rv1 + r2rv2 + . . .+ rrrvr],

(14)

where r11, . . . , rrr are nonvanishing since R̂ is assumed to be invertible. This
implies that the vectors ψm(A)vj , 1 ≤ j ≤ r, can be written as linear combina-
tions of the vectors v++

1 , . . . , v++
r . Hence, Ai+1v++

k can be written as a linear
combination of the previous vectors and a breakdown will occur.

This shows that if a breakdown occurs while using the IRBL method then a
random vector must replace a starting vector. A similar argument holds if we
stop Algorithm 2 when the breakdown occurs. Considering that the convergence
of the IRBL method depends on applying an accelerating polynomial to dampen
part of the spectrum, stopping Algorithm 2 early will result in a lower degree
polynomial applied during that iteration. Hence, we should apply either Option
I or II, so that we get the largest degree possible for the accelerating polynomial.
This is especially important if Ritz values are used as shifts in the IRBL method
since early termination will produce poor approximate Ritz values.

If a breakdown occurs and an eigenvector has not converged, then we need
to modify our starting vectors. Therefore, if a breakdown occurs while creating
vector vj+1 in Algorithm 2, then before restarting we should replace the starting
vector vk, k = jmod(r) + 1 in V ++

r with a random vector. The addition of a
random vector will introduce undesired eigenvector components, slowing down
convergence. To help prevent the introduction of undesired eigenvector com-
ponents the random vector can be projected onto the Krylov subspace already
computed before replacing the starting vector vk.

To reduce computation flops, Option II can be used so that a reduction in
block size may result and more shifts can be applied during that iteration. This
is illustrated in Example 2 in Section 5. However, it is not always possible to
take advantage of a reduced block size and application of more shifts. Therefore,
we suggest using Option I with replacing the starting vector that caused the
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breakdown with a random vector.

5 Numerical Experiments

This section presents a few examples that illustrate how the different strategies
presented in this paper can be used to overcome a singular block in a restarted
method. The numerical examples presented here have a breakdown occur in the
first iteration. All numerical experiments were carried out in MATLAB using
double precision arithmetic, i.e., with approximately 16 significant digits. The
stopping criterion used in all examples is

‖Ax− xθ‖ = ‖(AVmr − VmrTmr)y‖ = ‖FrE
T
r y‖ ≤ TOL(15)

where AVmr = VmrTmr + FrE
T
r is a block Lanczos decomposition, θ is an

eigenvalue of the matrix Tmr, y is an associated eigenvector, x = Vmry, and
TOL is a chosen tolerance. For all numerical experiments, the value of ε in (4)
which determines when a breakdown has occurred is chosen to be

√
macheps‖A‖.

Where macheps is the machine epsilon, ≈ 2.2 · 10−16, and ‖A‖ is the largest
singular value of A. The latter is approximated by ‖Tmr‖.

Example 1. Let A ∈ R100×100 be the matrix obtained by discretizing the
2-dimensional negative Laplace operator on the unit square by the standard
5-point stencil with Dirichlet boundary conditions. Algorithm 3 will be used
with block size r = 2, m = 5, and initial vectors

v1 = rand1,
v2 = A2 · v1,

(16)

where rand1 is a random vector and v2 is chosen so that a breakdown occurs
in the first iteration. This choice of starting vectors will cause the second off-
diagonal block B2 of the block tridiagonal matrix Tmr (3) to be singular. TOL
is set to 10−6. We are looking for the 3 smallest eigenvalues.

Deflation # Matrix-Vector Reoccurrence Missed
Procedure Products of Breakdown Multiple Eigs.
Option I 170 No No
Option II 90 Yes Yes

When applying Option I, the breakdown occurs only in the first iteration
in the second off-diagonal block B2. However, when applying Option II, the
breakdown occurred in the second off-diagonal block B2 in the first iteration,
and in the first off-diagonal block B1 in every iteration thereafter. We also
missed one of the multiple eigenvalues due to the early reduction of the block
size.



12 J. Baglama

Example 2. Let A = diag{a11, a22, . . . , a100,100} have entries

aii =


1

100 , if 1 ≤ i ≤ 3,

i2

100 , if 4 ≤ i ≤ 100.

The IRBL method will be used with block size r = 3, m = 5, shifts chosen as
Leja points [3], and initial vectors

v1 = rand1,
v2 = rand2,
v3 = A3 · v1,

(17)

where rand1 and rand2 are random vectors and v3 is chosen so that a breakdown
occurs in the first iteration. This choice of starting vectors will cause the third
off-diagonal block B3 of the block tridiagonal matrix Tmr (3) to be singular.
TOL is set to 10−8. We are looking for the 3 smallest eigenvalues.

Deflation # Matrix-Vector Reoccurrence Missed
Procedure Products of Breakdown Multiple Eigs.
Option I (random 555 No No
starting vector)

Option I 675 Yes Yes

Option II (random 390 No No
starting vector)

Option II 525 Yes Yes

When applying Option I without replacing starting vector v3 with a random
vector in any iteration, the breakdown occurs in the third off-diagonal block B3

in the first iteration, and in the third off-diagonal block B3 in at least half of
the iterations afterwards. This breakdown did not reoccur in every iteration
due to round-off errors. When applying Option I and replacing starting vector
v3 with a random vector in the second iteration, the breakdown occurred only
in the first iteration in the third off-diagonal block B3.

Applying Option II gave the following structure for the 15× 15 block tridi-
agonal matrix, 

D1 BT
1 0

B1 D2 BT
2

B2 D3 BT
3

B3 D4 BT
4

B4 D5 BT
5

0 B5 D6


,(18)
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where D1, D2, D3, B1, B2 are 3× 3 blocks, D4, D5, D6, B4, B5 are 2× 2 blocks,
and B3 is a 2 × 3 block. This structure allowed the IRBL method to apply 6
shifts. Without special handling of the breakdown only 5 shifts can be applied.

When applying Option II without replacing starting vector v3 with a random
vector in any iteration, the breakdown occurs in the third off-diagonal block B3

in the first iteration and in the third off-diagonal block B3 in at least half of
the iterations afterwards. Like the previous experiment with Option I, this
breakdown did not reoccur in every iteration due to round-off errors. We were
also able to apply 6 shifts when a breakdown occurred. This produced faster
convergence, i.e, fewer matrix-vector multiplications were required before the
termination criterion was satisfied, but the reduction of block size resulted in
a missed multiple eigenvalue. When applying Option II and replacing starting
vector v3 with a random vector in the second iteration, the breakdown occurred
only in the first iteration in the third off-diagonal block B3.

6 Conclusion

This paper illustrates how to handle an unfortunate breakdown in the restarted
block Lanczos methods. We showed that when Ritz vectors are used to restart
the block Lanczos method, breakdown can be handled the same way as in the
non-restarted block Lanczos method with no modification of the starting vectors.
However, in the IRBL method a modification of the starting vectors is required.
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