
Numerical Algorithms manuscript No.
(will be inserted by the editor)

Hybrid Iterative Refined Restarted Lanczos1

Bidiagonalization Methods2

James Baglama · Vasilije Perović ·3
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Abstract Presented are new hybrid restarted Lanczos bidiagonalization meth-7

ods for the computation of a few of the extreme singular triplets of very large8

matrices. Restarting is carried out either by a thick–restarted scheme with9

Ritz vectors or explicitly with iterative refined Ritz vectors. Several criteria10

are used to determine which restarted process is to be used. Also presented, are11

MATLAB codes that implement the described algorithms along with numer-12

ous examples demonstrating our methods are competitive with other available13

routines.14
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1 Introduction18

The singular value decomposition (SVD) of matrix A ∈ R`×n (` ≥ n)1 is a19

factorization of the form20

A = UΣV T (1)21

where U = [u1, . . . , un] ∈ R`×n and V = [v1, . . . , vn] ∈ Rn×n have orthonormal22

columns and Σ = diag
(
σ1, σ2, . . . , σn

)
∈ Rn×n with σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0.23
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Department of Mathematics and Applied Mathematical Sciences, University of Rhode Is-
land, Kingston, RI 02881
E-mail: jbaglama@uri.edu, perovic@uri.edu, jenniferpicucci@uri.edu

J. Picucci
U.S. Army Engineer Research and Development Center, Vicksburg, MS
E-mail: Jennifer.r.picucci@usace.army.mil

1 Otherwise replace A with AT .



2 James Baglama et al.

The σj ’s are the singular values of A, while uj ’s and vj ’s are the correspond-24

ing left and right singular vectors of A, respectively. Collectively, {σj , uj , vj}25

is referred to as a singular triplet of A. From (1), for 0 < s ≤ n, we have26

AVs = UsΣs, ATUs = VsΣs, (2)27

where Σs = diag
(
σ1, σ2, . . . , σs

)
∈ Rs×s, Us = [u1, . . . , us] ∈ R`×s, and Vs =28

[v1, . . . , vs] ∈ Rn×s; when s < n we refer to the factorization (2) as a partial29

singular value decomposition of A, or s-PSVD for short.30

The primary focus of this paper is on computing a small number of singular31

triplets, let’s say k, corresponding to the largest singular values and associ-32

ated vectors, while using as little memory as possible. In other words, we are33

interested in computing {σj , uj , vj}kj=1 such that34

Avj = σjuj , ATuj = σjvj , j = 1, 2, . . . , k . (3)35

Some of the earliest work in this direction can be traced to the landmark paper36

by Golub and Kahan [10], where the authors showed how singular triplets can37

be computed efficiently and in a numerically stable way by what is now known38

as the Golub-Kahan-Lanczos (GKL) bidiagonalization procedure.39

Today, SVD is one of the main computational methods with numerous40

applications, e.g., dimension reduction, Principal Component Analysis (PCA)41

[24], genomics [1,3], data mining, data visualization, machine learning, and42

pattern recognition [8,31]. Matrices arising from these applications are often43

very large, sparse and only accessible via matrix-vector routines which makes it44

impractical for the computation of all singular triplets. Fortunately, with these45

matrices one is typically interested in computing only a few of the largest (or46

smallest) singular triplets – this has spurred a considerable amount of research47

and software development, see e.g., [4,5,9,12,20,21,25,26,27,28,41] and the48

references therein.49

One of the features shared by many of the referenced routines is the vital50

role played by the GKL procedure [10]. Recall that for some starting unit51

vector p1 (and q1 := Ap1), this procedure creates orthonormal bases for the52

Krylov subspaces,53

Km(ATA, p1) = span
{
p1, A

TAp1,
(
ATA

)2
p1, . . . ,

(
ATA

)m−1
p1

}
,

Km(AAT , q1) = span
{
q1, AA

T q1,
(
AAT

)2
q1, . . . ,

(
AAT

)m−1
q1

}
,

(4)54

using only matrix-vector products with A and AT while avoiding explicitly55

creating the matrices ATA and AAT . This makes the process ideal for very56

large problems. The GKL procedure at step m yields the m-GKL factorization,57

APm = QmBm , (5)58

ATQm = PmB
T
m + feTm =

[
Pm pm+1

] [ BT
m

βme
T
m

]
, (6)59

where Pm = [p1, . . . , pm] ∈ Rn×m and Qm = [q1, . . . , qm] ∈ R`×m have60

orthonormal columns which form bases for Krylov subspaces (4) respectively,61
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the residual vector f ∈ Rn satisfies PT
mf = 0, βm = ‖f‖, and pm+1 = f/βm.62

Further, em is the mth axis vector of appropriate dimension and63

Bm :=



α1 β1
α2 β2

α3 β3
. . .

. . .

. . . βm−1
αm

 ∈ Rm×m (7)64

is an upper bidiagonal matrix. Approximations of the singular triplets of A65

can be obtained from the singular triplets of Bm. Observe that when the norm66

of the residual vector f is small, the singular values of Bm are close to the sin-67

gular values of A (exact when f vanishes) and the associated singular vectors68

are computed using the basis vectors of the Krylov subspaces, see Section 2 for69

details. However, these approximations are typically poor for modest values70

of m, hence either requiring m to be increased or the starting vector p1 to be71

modified (explicitly or implicitly) and the GKL process restarted. Considering72

that the matrix A is of large scale and assuming prohibitive memory limita-73

tions, increasing m to a suitable value to get acceptable approximations is not74

an option. Thus, much of the research, including this paper, revolves around75

developing different restarting schemes for the GKL process. Note that there76

are already several notable routines that do this [4,5,20,21,25,26], particularly77

the thick–restarted GKL routine in [4] which plays a key role in this paper.78

In [4], Baglama and Reichel exploited the mathematical equivalence for79

symmetric eigenvalue computations of the implicitly restarted Arnoldi (Lanc-80

zos) method of Sorensen [35] and the thick–restarting scheme of Wu and Simon81

[40], as described in [29], and applied it to a restarted GKL procedure. Their82

thick–restarted GKL routine turns out to be a simple and computationally83

fast method for computing a few of the extreme singular triplets of large ma-84

trices that is less sensitive to propagated round-off errors; for a brief review85

of this scheme see Section 2. However, the routine struggles when the dimen-86

sion, m, of the Krylov subspaces is memory limited and kept relatively small87

in relationship to the number of desired singular triplets k, see the examples88

in Section 5. Recently, in the context of symmetric eigenvalue computation,89

the authors overcame this memory restriction by creating a hybrid restarted90

Lanczos method that combines thick–restarting with Ritz vectors with a new91

technique, iteratively refined Ritz vectors [2]. The thick–restarted part was92

carried out as described in [40] and when certain criteria were met, the rou-93

tine switched to restarting with a linear combination of iteratively refined Ritz94

vectors. In [2], the authors showed that the scheme of thick–restarting of Wu95

and Simon was not available with refined or iteratively refined Ritz vectors.96

Furthermore, in [2] an alternate scheme was introduced in which, based on97

the relationships first proposed by Sorensen [35] and later outlined in detail98

by Morgan [29], the iteratively refined Ritz vectors are linearly combined and99

then used to restart the process. The constants were chosen in such a way100
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that the linear combination of the iteratively refined Ritz vectors resembles a101

restart, in a somewhat asymptotic sense, of thick–restarting, see [2, Sec. 6] for102

details.103

It is well–known that the refined Ritz vectors can provide better eigen-104

vector approximations than the Ritz vectors, see [18,22] for details. But in a105

restarted scheme, “better” approximation is only a part of the overall need and106

an efficient restarting scheme is also required. One approach was given in [16],107

where “refined” shifts are used in the implicitly restarted Arnoldi method. In108

the context of SVD, this approach was further extended [20,21] resulting in109

an implicitly restarted GKL procedure for computing singular triplets. In this110

paper, we present another approach where we extend the restarted hybrid iter-111

ative refined scheme [2] to the GKL procedure for computing singular triplets.112

In the context of the symmetric eigenvalue problem, the authors in [2] con-113

sider an iterative refined Ritz scheme in which the refined process is repeated114

until convergence. This process has the benefit of eliminating part of the re-115

fined Ritz residuals and aiding in the ability to create a linear combination116

to resemble thick–restarting, all while producing a “smaller” norm. A brief117

review of the iterative refined Ritz scheme is provided in Section 3 though for118

a thorough discussion and results we refer the reader to [2].119

To make the connection between the symmetric eigenvalue problem and120

the SVD of A ∈ R`×n more explicit, consider the matrices121

ATA ∈ Rn×n and C =

[
0 A
AT 0

]
∈ R(`+n)×(`+n). (8)122

We refer to ATA as the normal matrix or system and C as the augmented123

matrix or system. The eigenvalues of ATA are the squares of singular values124

of A, while the associated eigenvectors of ATA are the corresponding right125

singular vectors of A, i.e., ATAvj =σ2
j vj . When σj 6= 0, the left singular vectors126

can be computed as uj = (1/σj)Avj . In the case of the augmented system C,127

its eigenvalues are ±σj as well as ` − n zero eigenvalues. The eigenvectors of128

C associated with ±σj are 1√
2
[uj ;±vj ], where {σj ,uj ,vj} is a singular triplet129

of A.130

Multiplying equation (5) from the left by AT produces the Lanczos tridi-131

agonal decomposition of the normal matrix ATA, namely132

ATAPm = PmB
T
mBm + αmfme

T
m =

[
Pm pm+1

] [ BT
mBm

αmβme
T
m

]
. (9)133

Similarly, in the case of matrix C, after performing 2m steps of the standard134

Lanczos algorithm with the starting vector [0 ; p1] ∈ R`+n we have a 2m× 2m135

tridiagonal projection matrix, which when followed by an odd-even permuta-136

tion gives the following Lanczos factorization [11, Sec. 10.4.3] [25]137

[
0 A
AT 0

] [
Qm 0
0 Pm

]
=

[
Qm 0 0

0 Pm pm+1

] 0 Bm

BT
m 0

βme
T
m 0

 . (10)138
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Considering the Lanczos factorization relationships (9) and (10), the results139

and properties related to the hybrid iterative refined Ritz scheme in [2] are140

carried over to the methods developed in the subsequent sections. Although141

our development is focused on the largest singular values, it can be applied to142

computing the smallest singular values and associated vectors.143

The paper is organized as follows. The thick–restarted scheme with Ritz144

vectors is reviewed in Section 2 while a new development of iteratively refined145

Ritz vectors computed either on the normal system (9) or the augmented146

system (10) can be found in Section 3. In Section 4, we describe our new hybrid147

methods and present two algorithms for computing singular triplets. Numerical148

examples are presented in Section 5 followed by conclusions in Section 6.149

Throughout this paper ‖ ·‖ denotes the Euclidean vector norm or the asso-150

ciated induced matrix norm. Ik is used to denote the k×k identity matrix while151

Ik1,k2 , with k1 ≥ k2, denotes the first k2 columns of Ik1 ; when the size is clear152

from the context we simply write I. When useful and for ease of presentation153

we utilize MATLAB’s syntax for constructing block matrices. An expression154

of the form ξ := η (resp., ξ =: η) is used to denote that ξ is defined to be155

equal to η (resp., η is defined to be equal to ξ). In order to distinguish among156

numerous SVD computations and to help the reader, throughout the paper157

we adopt the convention that superscripts (rz), (rf - ?), and (it - ?) correspond158

to the computations involving Ritz, refined Ritz, and iteratively refined Ritz159

values/vectors, respectively; here ? ∈ {n, a} denotes that (iteratively) refined160

Ritz are computed with respect to either the normal or the augmented systems161

(8). Finally, when a formula is developed and used in different settings, we use162

a “generic” superscript (..) (see Sections 2-3).163

2 Thick–restarted GKL process with Ritz vectors164

In order to establish the notation, as well as for the sake of completeness, we165

briefly review the method of thick–restarting with Ritz vectors. We note that,166

although not presented here and can be used in our scheme, thick–restarting167

can also be carried out with harmonic Ritz vectors, see [4] for a thorough168

discussion and details.169

The starting point for thick–restarting is the observation that once the m-170

GKL factorization (5)-(6) of A is computed, then singular values of A can be171

approximated by singular values of Bm. Let the s-PSVD of Bm from (7) be172

BmV
(rz)
s = U (rz)

s Σ (rz)
s , BT

mU
(rz)
s = V (rz)

s Σ (rz)
s , (11)173

where U
(rz)
s = [u

(rz)
1 , . . . , u

(rz)
s ] ∈ Rm×s and V

(rz)
s = [v

(rz)
1 , . . . , v

(rz)
s ] ∈ Rm×s

174

have orthonormal columns and Σ
(rz)
s = diag

(
σ

(rz)
1 , . . . , σ

(rz)
s

)
∈ Rs×s such that175

σ
(rz)
1 ≥ σ (rz)

2 ≥ · · · ≥ σ (rz)
s ≥ 0. Define P̃s := PmV

(rz)
s and Q̃s := QmU

(rz)
s , where176

Pm and Qm are as in (5) and (6). Then from (5), (6), and (11) it follows that177

AP̃s = APmV
(rz)
s = QmBmV

(rz)
s = QmU

(rz)
s Σ (rz)

s = Q̃sΣ
(rz)
s =: Q̃sB̃s . (12)178
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Similarly,179

AT Q̃s = ATQmU
(rz)
s = PmB

T
mU

(rz)
s + feTmU

(rz)
s = PmV

(rz)
s Σ (rz)

s + f(eTmU
(rz)
s ) ,180

=
[
P̃s ps+1

] [ Σ
(rz)
s

ρ1 . . . ρs

]
=:
[
P̃s ps+1

]
B̃T

s,s+1 , (13)181

where ps+1 = f/‖f‖ and ρj = ‖f‖U (rz)
s (m, j). Note that the pair of factoriza-182

tions (12)-(13) can be extended with ps+1 as the starting vector to obtain a183

new factorization similar to the m-GKL factorization (5)-(6); the noted differ-184

ence is in the structure of Bm which is given by185

Bm =



[
B̃s,s+1

]
0

αs+1 βs+1

. . .
. . .

. . . βm−1
0 αm


∈ Rm×m. (14)186

187

Remark 1 The pairs of factorizations (5)-(6) (with Bm as in (7) or (14)) and188

(12)-(13) play a central role in this paper. As such, throughout the rest of189

this paper, we refer to (12)-(13) and (5)-(6) as an s-GKL and an m-GKL190

factorizations, respectively. Note that due to the structure of matrices B̃s (12)191

and B̃s,s+1 (13), the pair (12)-(13) is not a GKL factorization in the classical192

sense, though it can be transformed into one [38]. The algorithmic details193

for computation of the factorizations (5)-(6) and (12)-(13) are standard in the194

literature – e.g., see [4, Algorithm 2.1] and the subsequent discussion regarding195

different reorthogonalization strategies.196

Once the m-GKL factorization (5)-(6) is computed, the s-PSVD factoriza-197

tion of Bm, with k ≤ s < m, can be used to initially approximate k singular198

triplets {σj , uj , vj} of A, j = 1, . . . , k. Depending how good these approxima-199

tions are, one can restart this process by first computing the s-GKL factor-200

ization (12)-(13) and extending it to the m-GKL (5)-(6) with Bm as in (14),201

until convergence.202

We use the notation {σ (..)
j , Qmu

(..)
j , Pmv

(..)
j } to denote an approximation to203

the k desired singular triplets of A, where σ
(..)
j , u

(..)
j , and v

(..)
j are taken from204

the methods described in this paper. For example, when using Ritz values and205

vectors we write206

{σ (..)
j , Qmu

(..)
j , Pmv

(..)
j } = {σ (rz)

j , Qmu
(rz)
j , Pmv

(rz)
j } . (15)207

The convergence is established by using the following residual equation208

that is derived from the Lanczos factorization (10),209

resAug
(..)
j =

√
‖Bmv

(..)
j −σ

(..)
j u

(..)
j ‖2+‖BT

mu
(..)
j −σ

(..)
j v

(..)
j ‖2+(eTmu

(..)
j )2β2

m , (16)210
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where βm = ‖f‖. Note that (16) can be simplified when using Ritz approxi-211

mation (15) to resAug
(rz)
j = |eTmu

(rz)
j |βm. Likewise, a residual equation can be212

computed from the Lanczos factorization (9)213

resNor
(..)
j =

√
‖BT

mBmv
(..)
j − (σ

(..)
j )2v

(..)
j ‖2 + (αmeTmv

(..)
j )2β2

m .

Note that if Bmv
(..)
j = σ

(..)
j u

(..)
j , then resNor

(..)
j = σ

(..)
j resAug

(..)
j . Finally, in-214

dependent of the restarted scheme used, convergence of an approximate triplet215

is tested via (16) and the condition216

resAug
(..)
j ≤ tol · ‖A‖ , (17)217

where tol is a user specified tolerance and ‖A‖ is approximated by the largest218

singular value of Bm over all iterations.219

3 Refined and Iterative Refined Ritz vectors220

In 1997, Jia proposed to use refined Ritz vectors in place of Ritz vectors as221

eigenvector approximations of a matrix M [15]. More specifically, for a given222

approximate eigenvalue µj of M , Jia’s method looks to minimize ‖Mzj−µjzj‖223

for a unit vector zj from a given subspace W, i.e.,224

min
zj∈W , ‖zj‖=1

‖Mzj − µjzj‖. (18)225

In [15] it was shown that on the subspace W an approximate eigenpair using226

the refined Ritz vector produced a “smaller” residual norm than an eigenpair227

approximation with the Ritz pair. Since then, the notion of “refined vectors”228

has produced a significant amount of research in many directions, see e.g., [2,229

13,14,16,17,18,19,20,21,22,23,25,30] and references therein.230

More recently, in [2] we introduced the idea of iterative refined Ritz val-231

ues/vectors for the symmetric eigenvalue problem, where the approximate232

eigenvalue in the refined scheme is replaced with the latest computed refined233

Ritz value until convergence.234

Through numerical examples in [2] it was demonstrated that when memory235

was limited and only iterative refined Ritz vectors were used to restart the236

method there was potential for either slow or no convergence. Similar behavior237

is also observed in this context, see Example 1. As a way to overcome these238

challenges, a hybrid method was developed that uses thick–restarted with239

Ritz vectors and under certain criteria it restarts with a linear combination of240

iterative refined Ritz vectors.241

In this paper, we extend the idea of iterative refined values/vectors to the242

GKL process and develop new hybrid schemes for computing singular triplets.243

Considering the relationships of the Lanczos factorizations (9) and (10) and244

symmetric matrices ATA and C =
[

0 A
AT 0

]
, respectively, we were able to lever-245

age multiple results from [2], though still several nontrivial adaptations were246

required (see Sections 3.1-3.2). There are several refined schemes as applied247
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to the matrix C that have been considered, e.g., [20,21]. More specifically,248

the refined Ritz scheme in [20] uses the lower bidiagonal Lanczos process [32]249

while the scheme in [21] utilizes the GKL process and computes refined har-250

monic Ritz values/vectors using the augmented system (10). Both schemes251

[20,21] implemented restarting by utilizing the refined process to gain “shifts”252

that are then used in an implicitly restarted GKL algorithm. Other implicitly253

restarted GKL methods worth mentioning include [25] where the authors uti-254

lized the lower bidiagonal Lanczos process on the related system AAT while255

using Ritz or harmonic Ritz values as “shifts”, and the method in [5] that256

used Leja points as “shifts” from the normal equations (9). What differenti-257

ates work in this paper from these methods, is that our primary focus is not258

on computing “shifts” but rather on a hybrid scheme that restarts the GKL259

process either through thick–restarting with Ritz or explicitly restarting with260

a linear combination of iterative refined Ritz vectors.261

3.1 Refined and Iterative Refined on normal system262

Our development of the iterative refined Ritz values/vectors naturally starts263

with the normal system (9). To that end, let M = ATA andW = Km(ATA, p1)264

in equation (18) and define265

Tm+1,m :=

[
BT

mBm

αmβme
T
m

]
∈ R(m+1)×m. (19)266

For each approximate eigenvalue µj of ATA compute the smallest singular267

value σ↓
(rf-n)
j and associated unit singular vectors of (Tm+1,m−µjIm+1,m), i.e.,268

(Tm+1,m − µjIm+1,m)v
(rf-n)
j = σ↓

(rf-n)
j wj , (20)269

(Tm+1,m − µjIm+1,m)Twj = σ↓
(rf-n)
j v

(rf-n)
j , (21)270

where v
(rf-n)
j ∈ Rm and wj ∈ Rm+1. Then from (5),(6), and (9) it follows that271

min
zj∈Km(ATA,p1)

‖zj‖=1

‖ATAzj − µjzj‖ = ‖(Tm+1,m − µjIm+1,m)v
(rf-n)
j ‖ = σ↓

(rf-n)
j (22)272

and the refined Ritz vector zj for µj is defined as zj := Pmv
(rf-n)
j . The approx-273

imate eigenvalue of ATA associated with the refined Ritz vector zj is selected274

as the Rayleigh quotient275

σ
(rf-n)
j

2
= zTj A

TAzj = v
(rf-n)
j

T
BT

mBmv
(rf-n)
j = ‖Bmv

(rf-n)
j ‖2 , (23)276

and the approximate refined singular triplet on the normal system for A is277

given by278

{σ (..)
j , Qmu

(..)
j , Pmv

(..)
j } = {σ (rf-n)

j , Qmu
(rf-n)
j , Pmv

(rf-n)
j } , (24)279
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where u
(rf-n)
j = Bmv

(rf-n)
j /σ

(rf-n)
j .280

The initial approximate eigenvalue µj in equations (20)-(22) can be taken281

as the Ritz value σ
(rz)
j

2
(11). Then the iterative refined Ritz process itera-282

tively refines the approximation, by taking the output approximation, σ
(rf-n)
j283

(23), setting µj = σ
(rf-n)
j

2
, and re–computing refined vectors v

(rf-n)
j , via (20)-284

(21) until convergence. This process produces a nonnegative, decreasing and285

hence convergent sequence σ↓
(..)
j

(i)
, see [2, Thm. 5.1]; Algorithm 1 outlines this286

process.287

Algorithm 1 Iterative Refined

1: Input: Tm+1,m ∈ R(m+1)×m (19) or T2m+1,2m ∈ R(2m+1)×2m (39) and {µj}kj=1 .

2: Output: {σ (it-n)

j , u
(it-n)

j , v
(it-n)

j }kj=1 and σ̂↓
(it-n)

j or {σ (it-a)

j , u
(it-a)

j , v
(it-a)

j }kj=1 and σ̂↓
(it-a)

j .

3: for j = 1, 2, . . . , k do
4: for i = 1, 2, . . . ,maxitref do
5: if normal system then

6: Compute v
(rf-n)

j

(i)
, w

(i)
j , and σ↓

(rf-n)

j

(i)
(20) and (21);

7: σ
(rf-n)

j

(i)
:= ‖Bmv

(rf-n)

j

(i)
‖ (23);

8: if converge then

9: σ
(it-n)

j := σ
(rf-n)

j

(i)
, v

(it-n)

j := v
(rf-n)

j

(i)
,u

(it-n)

j := Bmv
(it-n)

j /σ
(it-n)

j , σ̂↓
(it-n)

j := σ↓
(rf-n)

j

(i)
;

10: Break;
11: end if

12: µj := (σ
(rf-n)

j

(i)
)2 ;

13: else

14: Compute x
(i)
j , y

(i)
j , wx

(i)
j , wy

(i)
j , wz

(i)
j , and σ↓

(rf-a)

j

(i)
(40) and (41) ;

15: σ
(rf-a)

j

(i)
:= 2x

(i)
j

T
Bmy

(i)
j (43) ;

16: if converge and |‖x(i)j ‖ − 1/
√

2| ≤ √eps then

17: σ
(it-a)

j :=σ
(rf-a)

j

(i)
, v

(it-a)

j :=yj
(i)/‖yj(i)‖, u(it-a)

j := x
(i)
j /‖x(i)j ‖, σ̂↓

(it-a)

j :=σ↓
(rf-a)

j

(i)
;

18: Break;
19: end if

20: µj := σ
(rf-a)

j

(i)
;

21: end if
22: end for
23: end for

There are several options for the convergence check (steps 8 and 16) in288

Algorithm 1, e.g., |σ (..)
j

(i)
− σ

(..)
j

(i−1)
|/|σ (..)

j

(i)
| < eps, where eps is machine289

epsilon; the additional requirement on ‖x(i)j ‖ in step 16 is discussed in Sec-290

tion 3.2. While using finite arithmetic, stagnation can occur and we propose291

including an additional check to exit when detected. We identify stagnation292

as failed convergence. The initial view of Algorithm 1 (for loop maxitref ) may293

appear to be computationally expensive, however when the matrix Bm is kept294

very small, the cost is negligible in comparison to the cost of the matrix–vector295

products when the order of A is very large. We include computational times296



10 James Baglama et al.

for numerical examples in Section 5. When m is larger or as the overall scheme297

converges, we found that fewer iterations are needed and the iterative refined298

vectors did not differ much from the refined vectors. However, it should be299

noted again that the main focus of this paper is on using a very small sub-300

spaces, where differences are readily observed. Therefore, using Algorithm 1301

with initial approximate eigenvalues µj = σ
(rz)
j

2
, we obtain the approximate302

iterative refined Ritz singular triplet on the normal system for A as303

{σ (..)
j , Qmu

(..)
j , Pmv

(..)
j } = {σ (it-n)

j , Qmu
(it-n)
j , Pmv

(it-n)
j }. (25)304

Using the m-GKL factorization and the refined Ritz singular approxima-305

tion (24), together with equations (20)-(21), give us306

APmv
(rf-n)
j = QmBmv

(rf-n)
j = σ

(rf-n)
j Qmu

(rf-n)
j , (26)307

ATQmu
(rf-n)
j = PmB

T
mu

(rf-n)
j + feTmu

(rf-n)
j , (27)308

= σ
(rf-n)
j Pmv

(rf-n)
j + σ↓

(rf-n)
j /σ

(rf-n)
j

[
Pm pm+1

]
rj ,309

where rj = wj − ([v
(rf-n)
j ; 0]Twj)[v

(rf-n)
j ; 0]. Multiplying (26) by AT on the left310

yields the following relation311

ATAPmv
(rf-n)
j = σ

(rf-n)
j

2
Pmv

(rf-n)
j + σ↓

(rf-n)
j

[
Pm pm+1

]
rj . (28)312

If Algorithm 1 is used to compute the iterative refined Ritz value and313

vectors we have the output satisfying,314

(Tm+1,m − σ (it-n)
j

2
Im+1,m)v

(it-n)
j = σ̂↓

(it-n)
j ŵj , (29)315

(Tm+1,m − σ (it-n)
j

2
Im+1,m)T ŵj = σ̂↓

(it-n)
j v

(it-n)
j , (30)316

and since σ
(it-n)
j

2
= v

(it-n)
j

T
BT

mBmv
(it-n)
j we have from (29) [v

(it-n)
j ; 0]T ŵj = 0.317

Analogous to equations (26)-(27) with iterative refined Ritz singular approxi-318

mation (25) we have,319

APmv
(it-n)
j = QmBmv

(it-n)
j = σ

(it-n)
j Qmu

(it-n)
j (31)320

ATQmu
(it-n)
j = PmB

T
mu

(it-n)
j + feTmu

(it-n)
j (32)321

= σ
(it-n)
j Pmv

(it-n)
j + σ̂↓

(it-n)
j /σ

(it-n)
j

[
Pm pm+1

]
ŵj322

and after multipling (31) by AT
323

ATAPmv
(it-n)
j = σ

(it-n)
j

2
Pmv

(it-n)
j + σ̂↓

(it-n)
j

[
Pm pm+1

]
ŵj . (33)324

Applying [2, Eqns. (5.5) and (5.12)] to Lanczos relationships (28) and (33)325

shows that326

σ̂↓
(it-n)
j = resNor

(it-n)
j ≤ resNor (rf-n)

j ≤ resNor (rz)
j . (34)327
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Equation (34) shows that the iterative refined Ritz with respect to the328

normal residual on the same Krylov subspace Km(ATA, p1) are better ap-329

proximations, however an effective restart process that “improves” the next330

generated Krylov subspace is still needed. Equations (26)-(28) and (31)-(33)331

show that the refined Ritz and iterative refined Ritz vectors, respectively, are332

not all multiples of the same residual vector, see [2, Thm. 4.3] in context of333

Lanczos factorization and the symmetric eigenvalue problem. Therefore the334

thick–restarted scheme presented in Section 2 is not available. However, one335

can still explicitly restart the GKL algorithm with a linear combination. We336

first utilize that the approximations are taken from basis vectors and perform337

a single iteration of the GKL algorithm that avoids a matrix–vector product338

with A and AT as follows.339

1. Given v̄ =
∑k

j=1 cjv
(..)
j set β0 = ‖v̄‖ and v̄ = v̄/β0

2. Let ū = Bmv̄ set α1 = ‖ū‖ and ū = ū/α1

3. Set f = Pm(BT
mū− α1v̄) + feTmū and β1 = ‖f‖

4. Set p1 = Pmv̄, p2 = f/β1, q1 = Qmū

(35)340

The steps in (35) yield the following 1-GKL factorization341

Ap1 = q1α1 , (36)342

AT q1 =
[
p1 , p2

] [α1

β1

]
, (37)343

where GKL method can be restarted with p2. It is worth noting for k = 1344

and v̄ = v
(rf-n)
1 or v̄ = v

(it-n)
1 , equations (36)-(37) are the same as equations345

(26)-(27) or (31)-(32), respectively. For k > 1 the coefficients cj in (35) can be346

chosen several ways and greatly impact convergence. For example, for eigen-347

value problems Saad [33] suggests using residual norms which was also used348

for the refined Ritz algorithm [15, Alg. 1]. In [2] an alternate approach for349

iterative refined vectors modeled after Morgan [29] was used to eliminate part350

of the residual vector as the next Krylov subspace is built. Morgan [29] showed351

that for Ritz vectors and carefully chosen constants cj that parts of the resid-352

ual vector is eliminated when multiplied by A in the next iteration to build353

out the Krylov subspace, which resulted in the same final subspace as when354

implementing Sorensen’s implicitly restarted method [35]. Unfortunately, this355

equivalence is not present here, though not all is lost. It turns out that we can356

still eliminate part of the residual. This requires solving a small (k − 1) × k357

homogeneous system of equations (38) for coefficients cj358 [
eTmv

(it-n)
1 . . . eTmv

(it-n)
k

σ
(it-n)
1

2(i−2)
eTmB

T
mBmv

(it-n)
1 . . . σ

(it-n)
k

2(i−2)
eTmB

T
mBmv

(it-n)
k

]
i > 1,

(38)359

we refer the reader to [2, Sec. 6] for details.360
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3.2 Refined and Iterative Refined on augmented system361

We now turn our attention to developing notions of refined and iterative refined362

Ritz values/vectors on the augmented system. We start by letting M = C and363

W = K2m(C, [0; p1]) in equation (18) and define364

T2m+1,2m :=

 0 Bm

BT
m 0

βme
T
m 0

 ∈ R(2m+1)×2m. (39)365

For each initial eigenvalue approximation µj of C compute the smallest singu-366

lar value σ↓
(rf-a)
j and associated unit singular vectors of (T2m+1,2m−µjI2m+1,2m),367

(T2m+1,2m − µjI2m+1,2m)

[
xj
yj

]
= σ↓

(rf-a)
j

wxj

wyj

wzj

 , (40)368

(T2m+1,2m − µjI2m+1,2m)T

wxj

wyj

wzj

 = σ↓
(rf-a)
j

[
xj
yj

]
, (41)369

where xj , yj , wxj
, wyj

∈ Rm and wzj is a scalar. Then it follows that370

min
zj∈K2m(C,[0;p1])

‖zj‖=1

‖Czj − µjzj‖ = ‖(T2m+1,2m − µjI2m+1,2m)

[
xj
yj

]
‖ = σ↓

(rf-a)
j (42)371

and the refined Ritz vector zj for µj is defined as zj := [Qmxj ; Pmyj ]. Anal-372

ogous to the case of the normal system, the approximate eigenvalue of C373

associated with refined Ritz vector zj is selected as the Rayleigh quotient374

σ
(rf-a)
j = zTj Czj =

[
xj
yj

]T [ 0 Bm

BT
m 0

] [
xj
yj

]
= 2xTj Bmyj , (43)375

and the approximate refined singular triplet on the augmented system for A is376

given by377

{σ (..)
j , Qmu

(..)
j , Pmv

(..)
j } = {σ (rf-a)

j , Qmu
(rf-a)
j , Pmv

(rf-a)
j } , (44)378

where u
(rf-a)
j = xj/‖xj‖ and v

(rf-a)
j = yj/‖yj‖. Similar to (28) for the normal sys-379

tem, but this time applied to the Lanczos factorization (10) for the augmented380

system C, we have the following equality381 [
0 A
AT 0

] [
Qmxj
Pmyj

]
= σ

(rf-a)
j

[
Qmxj
Pmyj

]
+ σ↓

(rf-a)
j

[
Qm 0 0

0 Pm pm+1

] rxjryj
rzj

 , (45)382

where rzj = wzj is a scalar, ryj = wyj − [xj ; yj ]
T [wxj ; wyj ]yj ∈ Rm, and383

rxj = wxj − [xj ; yj ]
T [wxj ; wyj ]xj ∈ Rm. Given the relationship between the384
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eigenvalues of C and the singular values of A, we can start Algorithm 1 with385

the initial approximation µj in equations (40)-(42) as the Ritz value σ
(rz)
j .386

This now gives us an approximate iterative refined Ritz singular triplet on the387

augmented system for A as388

{σ (..)
j , Qmu

(..)
j , Pmv

(..)
j } = {σ (it-a)

j , Qmu
(it-a)
j , Pmv

(it-a)
j }. (46)389

For convenience, consider the unscaled output vectors of u
(it-a)
j and v

(it-a)
j from390

Algorithm 1 as the last iteration vectors x̂j := x
(i)
j and ŷj := y

(i)
j , respec-391

tively. Therefore, analogous to (29)-(30) and (33) we have the output from392

Algorithm 1 that satisfies393

(T2m+1,2m − σ (it-a)
j I2m+1,2m)

[
x̂j
ŷj

]
= σ̂↓

(it-a)
j

 ŵxj

ŵyj

ŵzj

 (47)394

(T2m+1,2m − σ (it-a)
j I2m+1,2m)T

 ŵxj

ŵyj

ŵzj

 = σ̂↓
(it-a)
j

[
x̂j
ŷj

]
, (48)395

where [x̂j ; ŷj ]
T [ŵxj

; ŵyj
] = 0, x̂j , ŷj , ŵxj

, ŵyj
∈ Rm, and ŵzj is a scalar and396

when applied to the Lanczos factorization (10) gives us the following397 [
0 A
AT 0

] [
Qmx̂j
Pmŷj

]
= σ

(it-a)
j

[
Qmx̂j
Pmŷj

]
+ σ̂↓

(it-a)
j

[
Qm 0 0

0 Pm pm+1

] ŵxj

ŵyj

ŵzj

 . (49)398

Similar to (34), the relationships (45) and (49) together with [2, Eqns. (5.5)399

and (5.12)] applied to symmetric matrix C imply that400

σ̂↓
(it-a)
j = resAug

(it-a)
j ≤ resAug (rf-a)

j ≤ resAug (rz)
j . (50)401

Equation (50) shows that the iterative refined Ritz with respect to the aug-402

mented residual on the same Krylov subspace K2m(C, [0; p1]) are better ap-403

proximations. But relation (50) is derived with respect to the unscaled vectors404

xj , yj , x̂j , ŷj . Unlike the singular vectors computed from the eigenvectors of C,405

the norms ‖xj‖, ‖yj‖ ‖x̂j‖, and ‖ŷj‖ are not necessarily equal to the common406

value 1/
√

2, especially during the onset of the overall routine. However, these407

norms do approach 1/
√

2 as approximations improve and we use it as a part of408

a convergence requirement in Algorithm 1. This requirement is reasonable by409

observing that from the iterative process of Algorithm 1 and equations (39),410

(40), and (43) it follows that411

x
(i)
j = 1/σ

(rf-a)
j

(i−1) (
Bmy

(i)
j − σ↓

(rf-a)
j

(i)
wx

(i)
j

)
. (51)412

When the iterative refine process converges and x̂j := x
(i)
j , then we have413

σ
(rf-a)
j

(i−1)
= σ

(rf-a)
j

(i)
= σ

(it-a)
j = 2x̂Tj Bmŷj and414
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x̂j = 1/σ
(it-a)
j

(
Bmŷj − σ̂↓(it-a)

j ŵxj

)
, (52)415

‖x̂j‖2 = 1/2− σ̂↓(it-a)
j /σ

(it-a)
j x̂Tj ŵxj

. (53)416

If σ̂↓
(it-a)
j = 0, then we have the desired property and convergence (see (50)). If417

σ̂↓
(it-a)
j 6= 0, then from (40) and (43) we have the relationship x̂Tj ŵxj = −ŷTj ŵyj .418

After multiplying (47) by [ŵxj
; 0 ; 0]T and using Bmŵxj

−σ (it-a)
j ŵyj

= σ̂↓
(it-a)
j ŷj419

from (48), we obtain420

|‖x̂j‖2 − 1/2| = (σ̂↓
(it-a)
j /σ

(it-a)
j )2|‖ŵxj‖2 − ‖ŷj‖2|/2 ≤ (σ̂↓

(it-a)
j /σ

(it-a)
j )2, (54)421

where the inequality is established using the triangle inequality and the fact422

that ‖ŵxj
‖ < 1 and ‖ŷj‖ < 1. Through numerical examples, we have found423

that including |‖x(i)j ‖ − 1/
√

2| ≤ √eps with the convergence test in step 16 in424

Algorithm 1 resulted in a better performance in our hybrid algorithm for the425

augmented system.426

Remark 2 We make the following observation from an asymptotic point of427

view of the iterative refined Ritz values/vectors on the augmented system.428

As the overall routine converges, it is expected for σ̂↓
(it-a)
j in (49) to approach429

0. As σ̂↓
(it-a)
j → 0, from (52)-(54) we have that ‖x̂j‖ ≈ ‖ŷj‖ ≈ 1/

√
2, u

(it-a)
j ≈430

1/σ
(it-a)
j Bmv

(it-a)
j , and σ

(it-a)
j ≈ ‖Bmv

(it-a)
j ‖. Moreover, we start to see the residual431

relation (50) holding on the normalized vectors and the alignment with the432

iterative refined Ritz values/vectors on the normal system. Therefore, we use433

formulas (35) with v
(..)
j := v

(it-a)
j to obtain the 1-GKL factorization (36)-(37)434

where GKL method can be restarted with p2. Likewise, when k > 1, we can435

replace v
(..)
j := v

(it-a)
j and σ

(..)
j := σ

(it-a)
j and solve the homogeneous system436

(38) to restart with a linear combination of vectors. Although an alignment437

is eventually expected, there are convergence differences, see the numerical438

examples in Section 5.439

We close this section with an example that illustrates that even though440

the refined and iterative refined values/vectors yield a “smaller” residual norm441

on the same Krylov subspace than Ritz values/vectors restarting with these442

“better” vectors in presence of small m value may not always yield a “better”443

Krylov subspace on the next iteration.444

Example 1 For this and the subsequent example, we consider the diagonal ma-445

trix A = diag(1:500) and the 262111 × 262111 matrix A = amazon0302 from446

[7]. We let k = 1 and m = 2 and search for the largest singular triplet with447

tolerance 10−6 while using (17) as a stopping criteria. For both matrices, we448

started by computing 2-GKL factorization with a random vector p1, and then449

on the next restart p1 was computed to be Ritz vector Pmv
(rz)
1 , refined Ritz450

on normal system Pmv
(rf-n)
1 , iterative refined Ritz on normal system Pmv

(it-n)
1 ,451
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refined Ritz on augmented system Pmv
(rf-a)
1 , or iterative refined Ritz on aug-452

mented system Pmv
(it-a)
1 . For both matrices, we ran all five restart methods 10453

times with a different random starting vector p1. For each restart method, we454

chose to compute only the common Ritz norm, resAug
(rz)
1 , as a way to make455

the comparison easier, but also because the focus here is on measuring the456

overall convergence, i.e., the quality of the Krylov subspaces.457

The results are presented in Figures 1a-1b which display the number of458

matrix–vector products (mvp) with A and AT against resAug
(rz)
1 . From Fig-459

ures 1a-1b it is evident that there is a wide range of convergence while the460

iterative refined values/vectors which yield a “smaller” residual norm, (50),461

demonstrate poor convergence or stagnation. Moreover, both figures show that462

the all refined methods are struggling at the beginning, especially with the463

amazon0302 matrix (see Figure 1b). This suggest that on a small subspace464

the refined methods are having difficulty capturing the needed components465

of the desired singular vector for restarting. Section 4 shows how this can be466

overcome. Although not displayed, and as expected, when we increased the467

value of m the differences between routines became smaller with all routines468

converging, e.g., for the diagonal matrix, when m = 10 all routines converged469

between about 300 and 380 matrix–vector products.470

4 Hybrid Iterative Refined Algorithms471

The poor convergence and stagnation reported for iterative refined Ritz vectors472

in Example 1 can be explained in part that the calculations of iterative refined473

Ritz vectors are more sensitive to converging to the next closest Ritz value474

during the iteration process. It is true that the refined Ritz also exhibit this475

behavior, but to a much lesser extent - causing slight jumps in residual curves476

at the beginning. This sensitivity of iterative refined Ritz vectors is the key477

for developing a hybrid method by signaling when the iterative refined vectors478

should not be used to restart the system.479

This now brings us to our first hybrid method for computing largest sin-480

gular triplets which uses thick–restarting with Ritz vectors and when certain481

criteria are met it switches to restarting with iterative refined Ritz vectors on482

the normal or the augmented system.483

The parameters to switch between thick–restarting and restarting with484

iterative refined vectors were chosen based on numerous experiments across485

a variety of problems. A careful balance is needed, since on the one side the486

iterative refined Ritz vectors can give a better approximation but with possible487

stagnation, while on the other side thick–restarted is a more efficient restarting488

scheme, but with not as good of approximations. Therefore, we first check the489

angle via the inner product between the desired iterative refined vector and490

the Ritz vector to determine that the refined process did not cause the vectors491

to deviate too far from each other. If the angle is acceptable, we use iterative492

refined Ritz vector(s) to restart. Numerous experiments suggest using493

min
1≤j≤k

|v (rz)
j

T
v

(..)
j | > 0.9 , (55)494
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(a) Example 1: A = diag(1:500) (b) Example 1: A = amazon0302 [7]

(c) Example 2: A = diag(1:500) (d) Example 2: A = amazon0302 [7]

Fig. 1 Examples 1-2: Each line represents a start with a random vector and then a restart
using the stated vector in the legend.

where v
(..)
j := v

(it-n)
j for the normal system and v

(..)
j := v

(it-a)
j for the augmented495

system. Although we have not encountered the following situation in practice,496

it is worth noting that it is possible that a Ritz vector may not have any accu-497

racy from the same subspace even though the refined vector is arbitrarily close498

to the desired eigenvector, see [18,23]. Since thick–restarted is the main routine499

with theoretical connection to implicitly restarted techniques and foundation500

for publicly available software, it is reasonable to assume that as the sequence501

of generated Krylov subspaces changes on each new iteration that the Ritz502

approximations will also change and improve.503

Secondly, in order to ensure convergence and avoid missing singular triplets504

(k > 1), we also require the input value µj into Algorithm 1 to be the best505

approximation for singular value of A over all computed σ
(rz)
j ’s values thus far506

and to reject using restarting with iterative refined Ritz vectors if the current507

computed iterative refined values, σ
(it-n)
j or σ

(it-a)
j , are not “better” than the508

past iteration’s best approximation. For example, during a current iteration509
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(iter) of Algorithm 2 we require in step 5 for the call to Algorithm 1 that510

µj = max
1 ≤ i ≤ iter

|σ (rz)
j

(i)
| for 1 ≤ j ≤ k (56)511

and for step 6512

|σ (..)
j

(iter)
| ≥ max

1 ≤ i ≤ iter-1
|σ (rz)

j

(i)
| for 1 ≤ j ≤ k , (57)513

where σ
(..)
j := σ

(it-n)
j for the normal system and σ

(..)
j := σ

(it-a)
j for the augmented514

system. When k = 1 we found that using (56) was a needed requirement515

for the best results, but encountered poor convergence results when enforcing516

(57) with m = 2. Additionally, due to a negligible computational cost, various517

convergence checks are performed at different stages of Algorithm 2, e.g., see518

steps 4, 7, and 13 – this allows for Algorithm 2 to exit at the right time and519

to avoid performing unnecessary expensive computations.520

We note to the reader that Algorithm 2 is a simplification of the actual521

computations performed. For instance, in the thick–restarted step 14 in Algo-522

rithm 2 we compute s-GKL factorization where s ≥ k before restarting. The523

technique of including additional vectors (> k) is a very common strategy to524

accelerate the convergence in restarted methods. Similarly a gap strategy can525

also be used to accelerate the convergence by avoiding shifting too close to the526

desired spectrum. For example, in the implicitly shifted Lanczos bidiagonaliza-527

tion schemes, a relative gap strategy can be used to enhance convergence, see528

[6,20,21,26] for details. Considering the connection between implicitly shift-529

ing with Ritz and thick–restarting, a simple gap strategy can also be used530

when deciding on adding additional vectors. We implemented the following531

straightforward and effective strategy for choosing s ≥ k,532

s = k + nc;
if σs − σs+1 < σs−1 − σs, s = s+ 1; end
s = max(floor((m+ nc)/2), s);
if s >= m, s = m− 1; end

(58)533

where nc is the number of converged singular triplets, see [39] for details and534

comparison of techniques. The strategy in (58) works well in this context,535

particularly when difference between k and m is kept relatively small. When536

restarting with iterative refined Ritz vectors, relations (58) were too aggressive537

and rarely satisfied the requirements (55) and (57) for all s > k and therefore538

we always use k iterative refined Ritz vectors for restarting. However, using k539

iterative refined Ritz vectors to restart can cause an unfortunate increase in540

the residual norms measured by Ritz values/vectors, particularly when k > 1.541

This can be seen in part as negating the idea of the gap strategy mentioned542

above. Consequently, we do not restart consecutively with iterative refined543

Ritz vectors if the last restart with iterative refined Ritz vectors caused the544

residual norm of Ritz vectors/values to increase from the previous iteration.545
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Algorithm 2 Hybrid: Thick—Restarted – Restarted SVDS (trrsvds)

1: Input: A ∈ R`×n or functions for evaluating matrix-vector products with A or AT ,
m : maximum size of GKL factorization,
k : number of desired singular triplets,
p1 : unit vector,
tol : tolerance for accepting computed approximate singular triple, cf. (17).

2: Output: k approximate singular triples {σj , uj , vj}kj=1 of A.

3: Compute m-GKL factorization (5)-(6) with Bm as in (7) or (14);
4: Compute the SVD of Bm (11) and check 1 ≤ j ≤ k (17) with (15);

5: Compute {σ (..)

j , u
(..)

j , v
(..)

j }
k
j=1 by Algorithm 1 with µj (56) for either the augmented

system or the normal system;

6: if all σ
(..)

j converged and satisfy (55) and (57) then

7: Check 1 ≤ j ≤ k (17) with (25) or (46);
8: if k > 1 then
9: Compute cj from (38);

10: end if
11: Compute 1-GKL factorization (36)-(37);
12: else
13: Check 1 ≤ j ≤ k (17) with (44) and µj (56);
14: Compute s-GKL factorization (12)-(13) where k ≤ s < m;
15: end if
16: Goto 3;

Example 2 This is a continuation of Example 1 and uses the same test matrices546

and parameters, except that now we use Algorithm 2 on two hybrid methods,547

restarting with Pmv
(rz)
1 and Pmv

(it-n)
1 (iterative refined Ritz on normal system)548

and Pmv
(rz)
1 and Pmv

(it-a)
1 (iterative refined Ritz on augmented system). Just549

as in Example 1 for both test matrices, we ran all hybrid methods 10 times550

with a different random starting vector p1.551

In Figures 1c-1d we collect the results, where the graphs display the num-552

ber of matrix–vector products (mvp) with A and AT against resAug
(rz)
1 for553

all routines. More specifically, for A = diag(1 :500), Figure 1c shows that our554

hybrid method with iterative refined Ritz on normal system always converged555

between 210 and 315 matrix–vector products with respect to resAug
(rz)
1 , com-556

pared to Example 1 where the best result is 1100 matrix–vector products.557

Similarly, for A = amazon0302, Figure 1d shows the hybrid method with it-558

erative refined Ritz on normal system always converged between 125 and 205559

matrix–vector products with respect to resAug
(rz)
1 while comparable compu-560

tation in Example 1 required about 700 matrix–vector products. This clearly561

illustrates that Algorithm 2 restarting with Pmv
(rz)
1 and Pmv

(it-n)
1 performed562

significantly better than all restarted methods in Example 1. Furthermore, we563

emphasize that in comparison to Example 1, Algorithm 2 avoided stagnation564

which was one of the motivating factors for its development.565

Remark 3 We note that in the context of Example 2, if iterative refined Ritz566

vectors were replaced with refined Ritz vectors in Algorithm 2, then we saw567

almost no performance increases over the results in Example 1 for restarting568

with refined Ritz vectors. This is attributed in part to the angle criteria (55)569
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for switching being almost always satisfied, a similar observation was made in570

the context of eigenvalue computations in [2, Examples 5.3 and 6.2].571

We conclude this section with a discussion of our second hybrid scheme,572

Algorithm 3, which can be viewed as a simple (≈ 100 lines of MATLAB code)573

yet powerful variant of Algorithm 2. Motivated by the performance of Algo-574

rithm 2 in Example 2, for Algorithm 3 we use the standard restarted process575

(no thick–restarted techniques) where we fix the basis size at m = 2 and restart576

with either an iterative refined Ritz vector on the normal system, Pmv
(it-n)
1 , or a577

Ritz vector, Pmv
(rz)
1 . This has the added advantage of reducing the overall com-578

plexity and computational cost beyond matrix–vector products, namely not579

needing to reorthogonalize the basis vectors, a gap strategy (58), or solving580

homogeneous system (38) when k > 1, which potentially can become numeri-581

cally ill-conditioned, see [2, Section 6]. Also, Algorithm 3 uses the “smallest”582

input matrix in the iterative scheme in Algorithm 1 further reducing the non–583

matrix–vector product computational cost.584

Algorithm 3 requires a deflation strategy when computing 1 < k < m sin-585

gular triplets. For the deflation (k > 1), our technique is simple and heavily586

motivated by the discussion in [36] – when singular vectors have been deter-587

mined to converge, they are locked and not modified again while at the same588

time all subsequent computed basis vectors are orthogonalized against them589

(see step 4 in Algorithm 3). In our implementation, if the k largest singular590

triplets are to be computed subject to the user–specified tolerance tol, then591

the first k − 1 singular triplets are computed and deflated with the tolerance592

tol(d) = 10−1 · tol. In comparison to the discussion in [36, Section 9] of the cas-593

cading approach, our choice of tol(d) is more restrictive when k ≤ 8. Given that594

this paper primarily focuses on computing a small number of singular triplets,595

the choice of tol(d) for deflating vectors is reasonable, simple to implement,596

yet highly effective as evidenced by all numerical results in Section 5. It is597

worth noting that a more involved deflation procedure might be needed when598

k is larger or deflation fails, e.g., singular triplets can not be computed within599

the user-specified tolerance. For an outline of some alternative approaches to600

deflation we refer the reader to [36], while a more comprehensive discussion of601

deflation can be found in [34,37].602

For the sake of completeness, we note that when deflation is performed in603

Algorithm 3 the computation of the residual in steps 7 and 13 is not straight-604

forward and requires using the inner products from the Gram–Schmidt process605

between the converged singular vectors and the basis vectors in the GKL pro-606

cess. The monitoring of the inner products also permits an easy detection of a607

“locking problem” see [36, Lemma 1]. Therefore, in step 13 in Algorithm 3 we608

check that all residuals satisfy the user-specified tolerance tol. We note that609

in all numerical examples in Section 5, we used tol(d) and did not encounter610

any “locking problems” for small values of k.611

Remark 4 Algorithm 2 which requires k < m does not require any deflation612

or locking procedure for the handling of k > 1 singular triplets. That is, it613
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implements a “non-locking” method [36], where singular triplets are updated614

on every iteration. This is the same method used in [4] and for a small number615

of desired singular triplets with a “reasonable” convergence tolerance is a very616

effective method. Implementation of additional locking strategies for either617

Algorithm 2 or Algorithm 3 is outside of the scope of this paper. Note that618

no significant advantages are expected when only a small number of singular619

triplets is desired, see remarks in [36,37].620

Algorithm 3 Hybrid: Restarted Deflation (2× 2) SVDS (rd2svds)

1: Input: A ∈ R`×n or functions for evaluating matrix-vector products with A or AT ,
k : number of desired singular triplets,
p1 : unit vector,
tol : tolerance for accepting computed approximate singular triples, cf. (17),
tol(d) < tol : tolerance for deflating < k singular triples, cf. (17).

2: Output: k approximate singular triples {σj , uj , vj}kj=1 of A.

3: j := 1 ;
4: Compute 2-GKL factorization where for i = 1, 2, . . . , (j − 1)
PT
2 vi = 0, fT vi = 0, and QT

2 ui = 0;

5: Compute the largest singular triplet {σ (rz)

1 , u
(rz)

1 , v
(rz)

1 } of B2 (11);

6: Compute {σ (it-n)

1 , u
(it-n)

1 , v
(it-n)

1 } by Algorithm 1 with µ1 (56);

7: if j < k and (17) is satisfied with tol(d) using either (25) or (44) with µ1 (56); then

8: {σj , uj , vj}:={σ (it-n)

1 , Q2u
(it-n)

1 , P2v
(it-n)

1 } or {σj , uj , vj}:={σ (rf-a)

1 , Q2u
(rf-a)

1 , P2v
(rf-a)

1 };
9: Compute f = f − (vTj f)vj ;

10: p1 := f/‖f‖, j := j + 1 ;
11: Goto 4;
12: else
13: Check (17) with tol using either (25) or (44) and µ1 (56);
14: end if
15: if σ

(it-n)

1 converged and satisfies (55) then
16: Compute 1-GKL factorization (36)-(37);
17: else
18: Compute 1-GKL factorization (12)-(13);
19: end if
20: Goto 4;

5 Numerical Examples621

In this section, we present MATLAB codes trrsvds2 and rd2svds2 which im-622

plement Algorithm 2 and Algorithm 3, respectively, along with several numer-623

ical examples that illustrate their performance. To that end, we compare our624

methods to six other routines: three publicly available MATLAB codes irlba625

[4]2,3, svdifp [28]4, and GKD[9]5, a publicly available MATLAB interfaced code626

primme svds[41]6, and MATLAB’s built–in functions svds and eigs, where627

2 Code available at: http://www.math.uri.edu/~jbaglama, retrieved on 4/10/22
3 Code available at: http://www.netlib.org/numeralgo/na26.tgz, retrieved on 4/10/22
4 Code available at: https://github.com/wildstone/SVDIFP, retrieved on 4/10/22
5 Code available at: https://github.com/sgoldenCS/GKD, retrieved on 4/10/22
6 Code available at: https://github.com/primme/primme, retrieved on 4/10/22

http://www.math.uri.edu/~jbaglama
http://www.netlib.org/numeralgo/na26.tgz
https://github.com/wildstone/SVDIFP
https://github.com/sgoldenCS/GKD
https://github.com/primme/primme
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eigs is applied to the symmetric matrices ATA and C =
[

0 A
AT 0

]
and the628

equivalent eigenvalue problems. Note that here we do not necessarily advocate629

using eigs on ATA as a general purpose method nor do we choose compar-630

ison examples where it is known to perform poorly. We refer the reader to631

[37, Section 3.2] for a through investigation of using ATA to compute singular632

triplets.633

The MATLAB interfaced code primme svds is part of a massive high per-634

formance C99 library PRIMME for computing eigenpairs and singular triplets635

and consists of numerous routines/techniques each with a different set of pa-636

rameters. It is not possible for us to compare against all these options and thus637

we only provide a small sample of them while using default values for most of638

the parameters and only set the ones needed for fair comparison. More specifi-639

cally, in all examples parameters are set to indicate that the problems are real640

and to use double precision. Also, the value primme.method is set to be the641

default min matvecs, since this is the measure we are comparing, and finally,642

the method is set to be primme svds hybrid. Likewise, the MATLAB GKD code643

also has many options and we continued to use the default parameter values644

except for minRestart. The default choice for minRestart caused the basis size645

to increase since minRestart must be less than than maxBasis. Because of such646

small basis sizes used in our examples we set minRestart to be equal to k and647

this provided very strong results for GKD as can be seen in Tables 3-5.648

Routines GKD, svdifp, and primme svds allow application of a precondi-649

tioner and can perform better when one is applied [9,28,41]. But the use of a650

preconditioner significantly increases the overall storage requirements, counter651

to this paper’s primary goal of using as little storage as possible, and hence we652

do not apply a preconditioner. To quote the authors of [28], “svdifp without653

preconditioning is simply the restarted Lanczos method with the LOBPCG-654

type subspace enhancement.”655

The MATLAB code irlba implements a technique to include additional656

vectors for thick–restarted as a way of improving convergence, similar to our657

dynamic scheme (58). However, irlba instead utilizes a parameter adjust658

which is by default set at three and allows the parameter to internally in-659

crease by the number of converged singular triplets. If initially adjust and k660

exceed the size of basis, the basis size is increased. Because of this rigidity661

of parameter adjust at the start and the fact that in all of our examples the662

Lanczos basis is restricted to be as small as possible, we set adjust to zero663

instead of its default value three.664

Now we turn our attention to trrsvds whose description of parameters665

and their default values are given in Table 1. To illustrate the different meth-666

ods available for trrsvds via the parameter choices we use the notation667

trrsvds([nor,aug]). The first entry is either nor for the normal equations668

in the hybrid method to compute the iterative refined Ritz pairs (25) or aug669

for the augmented equations in the hybrid method to compute the iterative670

refined Ritz pairs (46).671

With respect to reorthogonalization, trrsvds implements either one-sided672

full reorthogonalization or two-sided full reorthogonalization. If A is deter-673
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Table 1 The user specific parameters for trrsvds.

k Number of desired singular values. Default: k = 1.
m Number of Lanczos vectors. Default: m = 2 or m = 15 if sigma =’SS’ .
maxit Maximum number of restarts. Default: maxit = 2000.
maxitref Maximum number of iterations to find iterative refined Ritz singular values,

see Algorithm 1. Default: maxitref = 100.
method (’nor’, ’aug’) which method to use. Default: method =’nor’.
reorth (’one’ or ’two’) sided full reorthogonalization. Default: reorth = ’one’.
sigma (’LS’ or ’SS’) location of singular values. Default: sigma = ’LS’.
tol Tolerance for convergence, (17). Default: tol =

√
eps.

p1 Starting vector. If ` > n and sigma =’SS’ then p1 ∈ R` else p1 ∈ Rn.
Default: p1 = randn(n, 1).

mined to be ill-conditioned, by monitoring the minimum and maximum sin-674

gular values of Bm, then two-sided full reorthogonalization is used. Examples675

presented in this section with trrsvds, one-sided and two-sided full reorthog-676

onalization yield about the same accuracy, and so we do not report both.677

It should be noted that the full reorthogonalization strategy increases the678

overall computational times when Lanczos basis is increased. Unlike trrsvds,679

reorthogonalization is not used in rd2svds since only one-step of the GKL pro-680

cess is used to build 2-GKL factorization. The routines rd2svds and trrsvds681

with basis size of only two vectors (m = 2) using hybrid method with normal682

equations and searching only for the largest singular triplets are mathemati-683

cally equivalent, but they are slightly numerically different (see the results as684

reported in Examples 3-4 when k = 1 and m = 2).685

For the purpose of comparing codes, we limit our analysis to either using686

the default values for the parameters or set the parameters so that they the687

provide fairest comparison with respect to our proposed methods. For all codes,688

we set the following common parameters: number of desired singular triplets k,689

a common random starting vector p1 ∈ Rn or [0 ; p1] ∈ Rn+` for the augmented690

system C =
[

0 A
AT 0

]
, tolerance tol = 10−6, and Lanczos basis maximum size691

m. Instead of a starting vector, routines GKD, svdifp, and primme svds use692

an input matrix, and thus, for those routines we set the first column to be the693

common starting vector p1 and the rest of the columns are set to be common694

among those three routines.695

In regards to the other parameters, we set the tolerance for svdifp to be696

tol · ‖A‖2. This parameter choice provided the same order of magnitude of697

the residuals computed by svdifp as well as the other routines in Examples698

3-4. With respect to a common basis size similar to m in trrsvds, we identify699

the parameter in the other methods that represent the “storage” or basis size.700

Depending on a routine and a coding style, this parameter may be restricted701

(e.g., eigs(C) and svds require m ≥ k + 2) or additional storage may be702

included for calculations. We assume that for all methods the parameter that703

represents “storage” is comparable to the basis size m in ttrsvds and is704

therefore represented by m in and Tables 3-5. However, given the complexities705

and propriety of some of the codes this may not always be the case.706
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Remark 5 Let k > 1 be an arbitrary but fixed number of desired singular707

triplets. Recall that ttrsvds computes those k triplets with respect to the708

basis parameter m ≥ k and requires storage of 2m + 1 vectors. On the other709

hand, executing steps 4–19 in Algorithm 3 requires storage of 5 vectors, namely710

p1, p2, q1, q2, and f , that get constantly overwritten. rd2svds also requires an711

additional storage for 2(k − 1) converged left and right singular vectors. In712

case when m = k + 1 in ttrsvds, then ttrsvds and rd2svds have the same713

storage requirements, making them the most suitable for a direct comparison.714

Thus, we report results for rd2svds in Tables 4-5 under the size m = k + 1.715

In all examples and for all codes except svdifp, matrices A and AT are only716

accessed by calling a function whose inputs are x and a parameter designating717

which matrix-vector product, Ax or ATx, is to be the output. svdifp requires718

user to input the matrix A. The recorded value mvp in the examples is the total719

number of times Ax and ATx are computed. When the augmented system C720

(8) is used, to save memory space, it is never explicitly formed; the input vector721

is split and the calculation is only performed on Ax and ATx. All numerical722

examples were carried out using MATLAB version R2021a on a MacBook Pro723

2.6 GHz 6-Core Intel Core i7 processor and 16 GB (2667 MHz) of memory724

using operating system macOS Big Sur. Machine epsilon is ε = 2.2 · 10−16.725

In Tables 3-5, “N/A” is used to denote that the method is not available for726

the specified choice of parameters, “N/R” stands for not recorded and is used727

when a method alters parameters making it unfair for comparison, and finally728

“N/C” denotes the routine did not converge in the allotted (default) number729

of iterations – note that we did not modify the parameters to get the routine730

to work (e.g., increase the default setting for maximum number of iterations).731

The recorded cpu times displayed in Tables 3-5 are in seconds and recorded732

using MATLAB’s tic-toc command. Here we note that since primme svds733

is a MATLAB interfaced code, the recorded times are expected to be less734

than the all MATLAB syntax codes. Finally, it is worth highlighting that the735

performance of the methods in our comparisons also depends on the machine736

architecture, the author’s coding style, the design/purpose of the routines,737

and numerical implementation. Our MATLAB codes included here are only738

an illustration of the presented methods and the comparison is only meant to739

show the methods in this paper are competitive to other existing routines.740

Example 3 In this example we investigate the performance of routines ttrsvds741

and rd2svds when computing k largest singular triplets of six different matri-742

ces, where k = 1, 2, 3, 4 and m is varied from (k+1) to (k+3). More specifically,743

we compare performance of rd2svds, trrsvds(nor), and trrsvds(aug), with744

the methods eigs(C), eigs(ATA), irlba, svdifp, svds, primme svds, and745

GKD. The test matrices we used for the comparison are A = diag(1:500) and746

the five matrices listed in Table 2 from the SuiteSparse Matrix Collection [7].747

The mvp and cpu times are displayed in Tables 4-5 for different combi-748

nations of k and m. It is easy to see from the Tables 4-5 that our proposed749

routines are competitive. Moreover, Tables 4-5 also demonstrate that all of our750

three methods have converged for all m and k values – particularly of note is751
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the case when m = k + 1 in which case rd2svds performs excellently, while752

that was not even an option for majority of the other routines.753

In summary, given a wide range in sizes of the test matrices, together with754

the varied proximity among the largest singular values (see Table 2), Example 3755

shows that the methods developed in this paper are particularly competitive756

when using small m relative to the number of desired singular triplets k.757

Table 2 Test matrices used for the examples from the SuiteSparse Matrix Collection [7]

Matrix illc1033 JP amazon0302 Rucci1 relat9

# Rows 1033 87616 262111 1977885 12360060

# Cols 320 67320 262111 109900 549336

Non-zeros 4719 13734559 1234877 7791168 38955420

Kind Least Squares Tomography Directed Graph Least Squares Combinatorial

σ1 2.1444 4223.1 21.218 7.0687 21.626

σ2 2.1042 4019.3 21.136 6.9853 20.417

σ3 2.0855 3872.8 20.027 6.9625 18.666

σ4 2.0574 3819.2 19.277 6.8895 18.61

Example 4 For our final example, we compute the largest singular triplet for758

the matrix kmerV1r, currently the second largest in order in the SuiteSparse759

Matrix Collection [7] (kmerV1r is a square matrix with 214005017 rows and760

465410904 nonzero entries). This is also one of the largest matrices that was761

able to be loaded into MATLAB allowing all of the routines to successfully762

compute the largest singular triplet and has pushed the bounds of the machine763

architecture used. Table 3 displays the results for computing the largest singu-764

lar triplet of kmerV1r with m = 2, 3. The largest singular value was computed765

by all routines as σ1 = 6.5035 within the desired tolerance. As seen in Table 3,766

for m = 2 our MATLAB codes ttrsvds and rd2svds all converged within767

45 minutes, the fastest, rd2svds, converging in about 31 minutes making it768

highly competitive with the other routines.769

6 Conclusions770

This paper extends the hybrid concept in [2] recently applied to the symmetric771

eigenvalue problem to the GKL process. The new restarted hybrid GKL meth-772

ods combine thick–restarting with Ritz vectors or with a judiciously chosen773

linear combination of iterative refined Ritz vectors. Numerical examples show774

our methods to be competitive with other publicly available codes, particularly775

when there are limited memory requirements.776
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Table 3 Example 4: mvp counts and total cpu times for computing the largest singular
triplet for the matrix kmerV1r with m = 2, 3. For m = 2 the method GKD increased m to
m = 3 and hence is not reported N/R.

Method m mvp cpu Method m mvp cpu

rd2svds
2 72 1867s

irlba
2 138 4554s

– – – 3 90 3122s

trrsvds(nor)
2 66 2032

svdifp
2 115 9276s

3 82 2939s 3 81 7669

trrsvds(aug)
2 80 2698s

svds
N/A – –

3 66 2287s 3 206 15091s

eigs(C)
N/A – –

primme svds
N/A – –

3 274 22686s 3 64 1975s

eigs(ATA)
N/A – –

GKD
N/R – –

3 91 1868s 3 58 5282s
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Table 4 Example 3: mvp counts and total cpu times for matrices diag(1:500), illc1033, and
JP. For m = k + 1 the methods eigs(C), eigs(ATA), and svds were N/A and the method
GKD was N/R since it increased m to m = k+ 2, therefore those methods are omitted in the
table when m = k + 1. rd2svds is only reported for m = k + 1.

diag(1:500) illc1033 JP
m=k+1

Method k=1 k=2 k=3 k=4 k=1 k=2 k=3 k=4 k=1 k=2 k=3 k=4

rd2svds
276

0.07s
412

0.04s
686

0.06s
796

0.06s
120

0.03s
192

0.03s
298

0.03s
416

0.03s
54

0.80s
144

2.20s
212

3.30s
278

4.30s

trrsvds(nor)
286

0.15s
2172
0.39s

1006
0.23s

1086
0.32s

114
0.10s

436
0.13s

304
0.09s

208
0.05s

58
1.03s

136
2.33s

292
5.08s

214
3.80s

trrsvds(aug)
1390
0.17s

964
0.25s

946
0.35s

1192
0.55s

126
0.03s

282
0.06s

252
0.08s

570
0.19s

70
1.14s

94
1.55s

264
4.58s

202
3.57s

irlba N/C N/C N/C N/C
364

0.04s
708

0.05s
424

0.03s
728

0.05s
122

1.97s
148

2.37s
436

7.32s
210

3.54s

svdifp
423

0.05s
546

0.03s
801

0.02s
1042
0.02s

223
0.03s

306
0.02s

353
0.01s

422
0.01s

83
1.42s

132
2.22s

209
3.52s

282
4.78s

primme svds N/A N/A N/A
458

0.02s
N/A N/A N/A

188
0.01s

N/A N/A N/A
130

2.11s

diag(1:500) illc1033 JP
m=k+2

Method k=1 k=2 k=3 k=4 k=1 k=2 k=3 k=4 k=1 k=2 k=3 k=4

trrsvds(nor)
310

0.05s
1102
0.13s

442
0.07s

612
0.13s

106
0.03s

228
0.04s

168
0.03s

164
0.04s

66
1.06s

94
1.60s

130
2.24s

94
1.57s

trrsvds(aug)
310

0.03s
622

0.10s
422

0.11s
504

0.16s
106

0.02s
154

0.03s
154

0.04s
124

0.04s
54

0.88s
82

1.33s
164

2.90s
86

1.49s

eigs(C) N/C N/C N/C N/C
690

0.07s
528

0.03s
584

0.05s
406

0.02s
242

4.08s
292

4.98s
558

10.1s
300

9.67s

eigs(ATA)
1147
0.03s

706
0.02s

693
0.02s

N/C
199

0.01s
168

0.01s
185

0.01s
120

0.004s
79

1.26s
94

1.48s
149

2.39s
98

1.55s

irlba
1146
0.07s

960
0.06s

674
0.04s

1132
0.07s

198
0.02s

206
0.02s

162
0.01s

142
0.01s

78
1.22s

78
1.26s

118
1.94s

80
1.32s

svdifp
291

0.01s
478

0.02s
719

0.01s
960

0.02s
147

0.01s
262

0.02s
309

0.01s
408

0.01s
69

1.16s
126

2.12s
209

3.53s
252

4.46s

svds N/C N/C N/C N/C N/C N/C N/C
212

0.02s
206

3.36s
208

3.42s
210

3.57s
202

3.50s

primme svds
218

0.02s
N/A

404
0.02s

454
0.02s

118
0.01s

N/A
148

0.01s
176

0.01s
48

0.80s
N/A

106
1.74s

118
1.88s

GKD
212

0.04s
321

0.06s
368

0.05s
435

0.07s
112

0.03s
113

0.03s
130

0.03s
153

0.03s
42

0.73s
69

1.16s
94

1.68s
107

2.02s

diag(1:500) illc1033 JP
m=k+3

Method k=1 k=2 k=3 k=4 k=1 k=2 k=3 k=4 k=1 k=2 k=3 k=4

trrsvds(nor)
386

0.05s
772

0.08s
402

0.05s
392

0.06s
112

0.02s
116

0.02s
148

0.02s
128

0.02s
58

0.96s
84

1.35s
102

1.72s
80

1.34s

trrsvds(aug)
406

0.06s
412

0.05s
354

0.07s
386

0.10s
102

0.01s
154

0.02s
166

0.03s
158

0.04s
54

0.87s
78

1.25s
78

1.32s
82

1.39s

eigs(C) N/C
1732
0.06s

1270
0.04s

N/C
504

0.03s
402

0.02s
384

0.02s
286

0.01s
140

2.35s
188

3.19s
278

5.59s
166

2.82s

eigs(ATA)
681

0.02s
506

0.01s
417

0.01s
654

0.02s
149

0.01s
134

0.004s
131

0.004s
112

0.003s
49

0.78s
72

1.13s
97

1.55s
80

1.25s

irlba
800

0.04s
680

0.03s
486

0.02s
426

0.02s
146

0.01s
158

0.01s
136

0.01s
130

0.01s
62

0.97s
70

1.11s
84

1.38s
70

1.17s

svdifp
251

0.01s
446

0.01s
681

0.03s
908

0.02s
123

0.003s
216

0.01s
297

0.03s
390

0.01s
59

0.99s
126

2.12s
189

3.36s
278

5.02s

svds N/C N/C N/C N/C
210

0.02s
208

0.02s
214

0.02s
236

0.02s
164

2.72s
212

3.63s
176

3.01s
136

2.29s

primme svds
178

0.01s
242

0.02s
386

0.02s
366

0.02s
64

0.01s
104

0.01s
144

0.01s
156

0.01s
46

0.77s
64

1.04s
102

1.64s
110

1.75s

GKD
208

0.03s
325

0.05s
352

0.05s
421

0.05s
92

0.02s
113

0.02s
130

0.03s
161

0.03s
38

0.68s
69

1.20s
102

1.90s
101

1.80s
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Table 5 Example 3: mvp counts and total cpu times for matrices amazon0302, Rucci1,
and relat9. For m = k + 1 the methods eigs(C), eigs(ATA), and svds were N/A and the
method GKD was N/R since it increased m to m = k+2, therefore those methods are omitted
in the table when m = k + 1. rd2svds is only reported for m = k + 1.

amazon0302 Rucci1 relat9
m=k+1

Method k=1 k=2 k=3 k=4 k=1 k=2 k=3 k=4 k=1 k=2 k=3 k=4

rd2svds
148

0.64s
220

0.97s
290

1.40s
318

1.90s
126

3.40s
194

5.70s
290

9.50s
438

17.0s
66

20.3s
114

42.0s
242

96.0s
386
170s

trrsvds(nor)
158

0.75s
136

0.83s
232

1.96s
114

1.11s
132

4.64s
978

41.6s
234

11.0s
916

64.0s
60

21.4s
104

38.0s
1216
677s

1088
729s

trrsvds(aug)
888

4.16s
104

0.70s
168

1.46s
136

1.48s
166

5.78s
846

37.7s
346

20.1s
1000
72s

76
27.5s

90
38.5s

1036
592s

1460
981s

irlba
1236
6.27s

150
1.15s

186
1.57s

160
1.92s

456
14.1s

1280
56.8s

636
34.2s

1330
81.0s

102
35.8s

102
46.6s

1442
803s

N/C

svdifp
179

1.37s
168

1.36s
233

2.10s
342

3.40s
183

9.20s
414

20.5s
489

25.2s
592

31.8s
79

40.2s
138

71.1s
441
245s

542
314s

primme svds N/A N/A N/A
148

1.06s
N/A N/A N/A

288
5.44s

N/A N/A N/A
224

58.8s

amazon0302 Rucci1 relat9
m=k+2

Method k=1 k=2 k=3 k=4 k=1 k=2 k=3 k=4 k=1 k=2 k=3 k=4

trrsvds(nor)
138

0.64s
86

0.49s
144

1.01s
92

0.81s
122

3.56s
306

10.1s
230

9.31s
540

40.5s
62

19.9s
74

27.0s
640
413s

490
354s

trrsvds(aug)
142

0.65s
78

0.48s
142

1.00s
86

0.86s
114

3.39s
210

9.91s
222

9.24s
482

34.9s
58

19.0s
64

27.1s
764
512s

402
297s

eigs(C) N/C
290

2.18s
218

1.88s
342

4.04s
886

31.2s
N/C N/C N/C

202
82.3s

208
100s

N/C N/C

eigs(ATA)
651

2.46s
94

0.43s
85

0.43s
104

0.63s
255

3.26s
212

2.76s
365

5.23s
612

8.90s
71

16.5s
68

15.8s
N/C

464
109s

irlba
650

3.18s
92

0.61s
94

0.77s
92

0.93s
254

6.92s
264

9.08s
320

15.1s
596

38.0s
70

22.5s
66

25.7s
926
564s

464
314s

svdifp
105

0.85s
158

1.41s
259

2.53s
312

4.68s
141

6.99s
334

17.3s
439

23.7s
552

44.9s
69

35.6s
134

72.0s
389
225s

492
418s

svds
206

1.32s
208

1.64s
210

1.98s
212

2.28s
N/C N/C N/C N/C

150
63.4s

208
104s

N/C N/C

primme svds
96

0.46s
N/A

110
0.80s

146
0.98s

98
1.74s

N/A
202

3.84s
292

5.20s
46

11.8s
N/A

180
47.3s

226
56.6s

GKD
90

0.74s
73

0.89s
98

1.44s
105

1.77s
92

4.94s
171

11.9s
194

15.3s
307

29.8s
40

24.0s
63

43.6s
326
260s

221
200s

amazon0302 Rucci1 relat9
m=k+3

Method k=1 k=2 k=3 k=4 k=1 k=2 k=3 k=4 k=1 k=2 k=3 k=4

trrsvds(nor)
110

0.62s
74

0.42s
96

0.65s
76

0.77s
118

3.52s
232

8.35s
262

9.30s
348

20.7s
52

16.7s
62

21.9s
348
233s

328
251s

trrsvds(aug)
84

0.47s
72

0.44s
76

0.56s
88

0.73s
126

3.85s
202

6.85s
158

5.83s
350

23.5s
58

20.0s
60

21.7s
338
238s

320
251s

eigs(C)
284

2.14s
222

1.59s
182

1.49s
218

2.04s
572

22.8s
624

24.6s
724

31.9s
1160
58.6s

128
55.9s

150
65.2s

N/C
988
539s

eigs(ATA)
89

0.41s
76

0.33s
79

0.38s
84

0.44s
177

2.29s
188

2.59s
209

2.95s
356

5.02s
49

11.4s
60

14.1s
513
119s

268
62.7s

irlba
446

2.22s
76

0.48s
80

0.60s
76

0.69s
188

4.94s
210

6.48s
210

7.53s
206

8.94s
56

17.4s
60

21.5s
322
206s

332
237s

svdifp
99

0.89s
186

1.84s
237

3.55s
306

5.08s
123

6.26s
296

16.0s
405

32.8s
530

46.0s
67

35.8s
126

70.5s
345
292s

502
455s

svds
188

1.50s
166

1.54s
192

2.13s
412

3.44s
N/C N/C N/C

410
18.3s

126
61.7s

212
115s

N/C
412
199s

primme svds
64

0.35s
76

0.48s
112

0.75s
122

0.85s
100

1.80s
148

2.75s
202

3.80s
230

4.33s
46

12.0s
66

17.7s
164

42.9s
182

47.7s

GKD
80

0.67s
73

0.76s
96

1.50s
105

1.52s
92

4.93s
171

11.4s
190

14.7s
283

24.2s
40

23.4s
63

41.6s
258
189s

231
207s


	Introduction
	Thick–restarted GKL process with Ritz vectors
	Refined and Iterative Refined Ritz vectors
	Hybrid Iterative Refined Algorithms
	Numerical Examples
	Conclusions

