
HYBRID ITERATIVE REFINED METHOD FOR COMPUTING A
FEW EXTREME EIGENPAIRS OF A SYMMETRIC MATRIX ∗

JAMES BAGLAMA† , TOM BELLA ‡ , AND JENNIFER PICUCCI §

Abstract. We developed a hybrid restarted Lanczos method that combines thick–restarting
with Ritz vectors with iteratively refined Ritz vectors to compute a few of the extreme eigenvalues
and associated eigenvectors of a large sparse symmetric matrix A. The iterative refined Ritz vectors
use a scheme, where we replace the approximate eigenvalue in the original refined scheme with the
latest computed refined Ritz value until convergence. The thick–restarting schemes have shown to be
superior to most other schemes, particularly restarted schemes of linear combinations. However, the
simple thick–restarting Lanczos scheme is not available when using refined or iterative refined Ritz
vectors. Instead, we use a hybrid restarted scheme that switches between thick–restarted with Ritz
vectors and restarting with a judiciously chosen linear combination of iterative refined Ritz vectors.
We provide some theoretical results and several computed examples.

Key words. restarted Lanczos method, eigenvalue computation, singular value, refined Ritz,
thick–restarted.

AMS subject classifications. 65F15, 65F50, 15A18

1. Introduction. Large sparse symmetric eigenvalue problems

(1.1) Ax = λx A ∈ Rn×n

are some of the most important and profoundly studied areas in numerical linear
algebra. Although these problems are numerically attractive, they can exhibit com-
putational challenges for even the best modern routines, e.g. clustering of eigenvalues,
matrix sizes (memory constraints), and orthogonality. The importance of these prob-
lems and computational challenges have spurred a considerable amount of research,
e.g.[1, 2, 6, 7, 13, 21, 22, 27, 28, 29] and references within. The goal of this paper
is twofold: the development of a new, simple algorithm that uses as little storage
as possible to compute a few of the extreme eigenpairs of a large sparse symmetric
matrix A, and provide some insightful results on the (iterative) refined Ritz scheme.
Since A is so large, we assume its factorization is not feasible and only the evaluation
of matrix–vector products with the matrix A is available.

The motivation for the paper starts with the pioneering algorithm of Sorensen [21]
for symmetric matrices called the Implicitly Restarted Lanczos (IRL) method (non–
symmetric case is referred to as Implicitly Restarted Arnoldi (IRA) method). The IRL
method is a restarted Krylov subspace method that implicitly modifies the starting
vector p1 with an accelerating polynomial. The accelerating polynomial is determined
by a specific selection of zeros of the polynomial, also called shifts. There are several
choices for shifts; the IRL method in [21] uses Ritz values as shifts. The choice of shifts
is crucial for performance of the IRL method and there have been investigations into
other choices, e.g. Leja points [1] and harmonic Ritz [15]. In 1997, Jia [6] introduced

∗Submitted to the editors on June 10, 2020. Revision submitted on November 11, 2020. Accepted
on January 27, 2021.
†Department of Mathematics, University of Rhode Island, Kingston, RI 02881. E-mail:

jbaglama@uri.edu.
‡Department of Mathematics, University of Rhode Island, Kingston, RI 02881. E-mail:

tombella@uri.edu.
§Department of Mathematics, University of Rhode Island, Kingston, RI 02881 E-mail:

jenniferpicucci@uri.edu and U.S. Army Engineer Research and Development Center, Vicksburg,
Mississippi. Email: Jennifer.r.picucci@usace.army.mil

1

2 J. BAGLAMA, T. BELLA, J. PICUCCI

the concept of refined Ritz vectors. The idea is for a given approximate eigenvalue
µ of A, to minimize ‖Az − µz‖ for a unit vector z from the current working Krylov
subspace. Refined Ritz vectors often provide better eigenvector approximations than
the Ritz vectors, see analysis [9, 10] for details. Since refined Ritz will be the basis of
our new method, a thorough discussion is presented in section 4. In [7], Jia applied
the refined concept in combination with the IRA procedure, referred to as Implicitly
Restarted Refined Arnoldi method (IRRA). Morgan [14] showed the equivalence of
the IRA method with Ritz values as shifts with augmenting the Krylov subspace by
certain Ritz vectors. Wu and Simon [27] exploited this idea in the symmetric case,
and by using the property that all of the Ritz vectors are multiples of same residual
vector, they created a simple augmented method, called the “Thick–Restarted Lanczos
method.” The method is mathematically equivalent to the IRL method and avoids
the need for the implicitly shifted QR algorithm. Similarly, Stewart [25] presents the
Krylov–Schur method for the non–symmetric case and showed its equivalence to, and
numerical superiority over, the IRA method.

The key feature needed with the thick–restarting Lanczos method with Ritz vec-
tors is that the resulting space remains a Krylov subspace, which is possible since
the Ritz vectors are all multiples of a single residual vector, [14]. The simple thick–
restarting scheme by Wu and Simon [27] with refined Ritz vectors in place of Ritz
vectors is not possible, because refined Ritz vectors are not all multiples of a single
residual vector, see Theorem 4.3 in section 4. Furthermore, as discussed in [9, 10, 17]
on the relationship between refined Ritz and Ritz vectors they are not parallel unless
refined Ritz vectors equal eigenvectors. We present a similar result for the context
here, see Theorems 4.2 and 5.2.

To improve approximations to desired eigenpairs and decrease the refined Ritz
residuals norm, we introduced an iterative scheme, where we replace the approximate
eigenvalue in the refined scheme with the latest computed refined Ritz value until
convergence, section 5. This process has the added benefit of eliminating part of the
refined Ritz residuals. The resulting residual vector has convenient qualities and a
“smaller” norm. However, like refined Ritz vectors, the iterative refined Ritz vectors
are not all multiples of a single residual vector, see section 5.

Morgan showed in [14] that the IRA method developed by Sorensen can be im-
plemented by using a starting vector with a cleverly chosen linear combination of
the desired Ritz vectors. We use a similar linear combination when restarting with
the iterative refined Ritz vectors. The idea is to inherit similar, beneficial, restarting
properties.

However, when using only refined Ritz or iterative refined Ritz vectors for restart-
ing we observed examples of stagnation, erratic convergence, or very slow convergence.
Slow convergence is exacerbated with restarted methods when using a low dimensional
subspace and/or clustered eigenvalues, see Examples 5.2 and 5.3 in section 5. Thick–
restarting with Ritz vectors also exhibits very slow convergence when using a low
dimensional subspace. Therefore, we implemented a hybrid method section 6 that
depends on certain criteria for switching from thick–restarting with Ritz vectors to
restarting with a linear combination of iterative refined Ritz vectors. We observed
through numerical experiments that although switching from thick–restarted Ritz to
a linear combination of iterative refined results in a temporary undesirable spike in the
norms of the residuals, this often relieves the stagnation/slow convergence, resulting
in an overall faster convergence. This has the added benefit of being able to use a
small Krylov subspace, see Figure 5.1.

Hybrid methods have been used previously for combining other forms of eigen-

HYBRID ITERATIVE REFINED METHOD 3

vector approximations. For example, a comparable method is a block hybrid method
that was proposed in [11] in which thick–restarting is performed by “modified” Ritz
vectors, computed over a block Krylov subspace. Their block hybrid algorithm uses a
power method with refined Ritz vectors “stitched” together with thick–restarting with
modified Ritz vectors. Although absent with their code, we do provide an example in
section 7 on the symmetric matrix experiment presented in their paper.

It should be noted that the Jacobi–Davidson method and extensions thereof are
competitive for the computation of a few eigenvalues and associated eigenvectors,
particularly when a known preconditioner is available; see [5, 20, 22, 23, 28] for de-
scriptions of such methods. We do provide some comparisons in section 7.

Throughout this paper ‖ · ‖ denotes the Euclidean vector norm or the associ-
ated induced matrix norm. When useful and for ease of presentation we will utilize
MATLAB notation.

The subsequent parts of the paper are organized as follows. We begin with a
background of restarted Lanczos method section 2, thick–restarting with Ritz vectors
in section 3, and refined Ritz pairs in section 4. Some theoretical results and rela-
tionships on refined Ritz pairs are included in section 4. In section 5, we describe our
new strategy for iterative refined Ritz vectors and provide several theoretical results,
motivation, and relationships. Our new hybrid method for computing the extreme
eigenpairs is presented in section 6. Numerical examples are presented in section 7
and conclusions follow in section 8.

2. Lanczos Method. For this discussion, we describe a Lanczos method that is
modeled after the algorithms presented in [16, 27]. Given a unit vector p1, we define
the Krylov subspace

(2.1) Km(A, p1) = span{p1, Ap1, A2p1, . . . , A
m−1p1}.

Application of m steps of the MLan(0) Algorithm 2.1 given below with the initial
starting vector p1 applied to the symmetric matrix A generates a sequence of m
orthogonal vectors pj ∈ Rn that form an orthonormal basis for the Krylov subspace
(2.1). This algorithmic process forms the well–known Lanczos decomposition,

APm = PmTm + feTm,(2.2)

where the Lanczos vectors

Pm = [p1, p2, . . . , pm] ∈ Rn×m(2.3)

satisfy PT
mPm = Im, and f ∈ Rn, referred to as the residual vector, satisfies PT

mf = 0.
The matrix Im denotes the identity matrix of order m and the vector em ∈ Rm consists
of the last column of Im. The matrix Tm is tridiagonal of the form

(2.4) Tm =



α1 β1 0
β1 α2 β2

β2
. . .

. . .
. . . βm−1

0 βm−1 αm


∈ Rm×m.

For brevity we give a more general version of MLan(`) that will be used in section 3.

4 J. BAGLAMA, T. BELLA, J. PICUCCI

Algorithm 2.1 MLan(`)

1: Input: A ∈ Rn×n: symmetric matrix,
p1, . . . , p`+1 ∈ Rn×(`+1): orthonormal vector(s) (3.2),
T̄`+1 ∈ R`+1×`+1 : if ` > 0 input matrix (3.5),
m : maximum number of Lanczos vectors.

2: Output: Pm = [p1, p2, . . . , pm] ∈ Rn×m: orthogonal matrix (2.3) or (3.7),
Tm ∈ Rm×m : if ` = 0 tridiagonal matrix (2.4), if ` > 0 matrix (3.8),
f ∈ Rn : residual vector.

3: for j = `+ 1 : m do
4: f := Apj
5: if j > `+ 1 then f := f − pj−1βj
6: if j = `+ 1 and ` > 0 then f := f − P`T̄ (`+1, 1:`)T

7: αj := fT pj and f := f − pjαj

8: Reorthogonalization: f := f − Pj(P
T
j f)

9: if j < m then βj := ‖f‖ and pj+1 := f/βj

For our discussion, we will assume that we can perform m− ` steps of Algorithm
2.1 to generate the Lanczos tridiagonal decomposition (2.2) or, later, (3.6). In prac-
tice, near-breakdowns can occur, i.e. βj ≈ 0 for some j (step 9 Algorithm 2.1), see
strategies such as those described in [2, 12] to continue the Lanczos process. Since m
in our discussion is of a modest size and the desired number of eigenpairs k is small, a
near-breakdown without convergence is rare and therefore, we will assume for the fol-
lowing discussion, Tm is unreduced. The reorthogonalization step introduced in step 8
of Algorithm 2.1 is a simple strategy to help maintain orthonormality among indepen-
dent vectors for modest values m � n. More robust reorthogonalization strategies,
e.g. selective or partial are described in the literature, see e.g. [16, 19, 27].

Let {θj , yj}mj=1 be the m eigenpairs of the tridiagonal matrix Tm with the desired

k eigenpairs appearing as the leading entries, i.e. {θj , yj}kj=1. Define xj := Pmyj .
Then θj and xj are commonly referred to as a Ritz value and a Ritz vector of A,
respectively, or simply a Ritz pair. It follows from (2.2) that

Axj − θjxj = APmyj − θjPmyj = (PmTm − θjPm) yj + feTmyj = feTmyj ,(2.5)

and therefore the norms of the residual errors for the Ritz pairs {θj , xj} satisfy

‖Axj − θjxj‖ = βm|eTmyj |(2.6)

where βm = ‖f‖. For numerical experiments, we use a stopping criterion

βm|eTmyj | ≤ ε‖A‖(2.7)

where ε is a user specified tolerance and ‖A‖ is approximated by the eigenvalue of
largest magnitude over all iterations thus far of the computed matrices Tm. For a
given number k of desired eigenpairs we have convergence when the norm (2.6) for all
j = 1, . . . , k is less than ε‖A‖.

3. Thick–Restarted Lanczos with Ritz vectors. We next briefly describe
the method of thick–restarting with Ritz vectors as outlined in [27] which is needed in
subsequent sections. For a thorough description, we refer the reader to [24, 25, 27, 28]
and the references within.

HYBRID ITERATIVE REFINED METHOD 5

From (2.5), we have for j = 1, . . . , k

Axj = θjxj + pm+1β̄j(3.1)

where pm+1 = f/βm and β̄j = βme
T
myj . Define

P̄k := [x1, . . . , xk] and P̄k+1 := [P̄k, pm+1].(3.2)

Then we have

AP̄k = P̄k+1T̄k+1,k(3.3)

where

(3.4) T̄k+1,k =


θ1 0

θ2
. . .

0 θk
β̄1 β̄2 . . . β̄k

 .

The factorization (3.3) can easily be extended to m vectors via MLan(k) Algorithm
2.1 by noticing that

(3.5) P̄T
k+1AP̄k+1 = T̄k+1 =


θ1 0 β̄1

θ2 β̄2
. . .

...

0 θk β̄k
β̄1 β̄2 . . . β̄k αk+1


where the last diagonal element αk+1 is computed in step 7 in the MLan(k) Algorithm
2.1. Step 6 in MLan(k) Algorithm 2.1 is used to ensure the orthogonalization of the
newly computed Lanczos vector against P̄k (3.2), c.f. Algorithm 3 in [27]. After m−k
steps of MLan(k) Algorithm 2.1 we have,

AP̄m = P̄mT̄m + f̄ eTm,(3.6)

where

P̄m = [P̄k+1, pk+2, . . . , pm] ∈ Rn×m,(3.7)

satisfies P̄T
mP̄m = Im, and f̄ ∈ Rn satisfies P̄T

mf̄ = 0 and

(3.8) T̄m =



T̄k+1 βk+1 0
βk+1 αk+2 βk+2

. . .

. . .
. . . βm−1

0 βm−1 αm


∈ Rm×m.

6 J. BAGLAMA, T. BELLA, J. PICUCCI

Algorithm 3.1 Thick–Restarted Lanczos

1: Input: A ∈ Rn×n: symmetric matrix,
p1 ∈ Rn: orthonormal vector,
k : number of desired eigenpairs of A,
m : maximum number of Lanczos vectors.

2: Output: (3.6) or {θj , xj}kj=1 approximate eigenpairs of A.
3: Compute factorization (2.2) by MLan(0) Algorithm 2.1
4: Compute the k desired eigenpairs {θj , yj}kj=1 of Tm (2.4) or T̄m (3.8)
5: Check convergence (2.6)
6: Set up (3.3) and (3.5) and call MLan(k) Algorithm 2.1 to get factorization (3.6)
7: Goto 4

4. Refined Ritz vectors. We briefly describe and provide some results on re-
fined Ritz vectors and values. For a thorough description, we refer the reader to
[6, 7, 9, 10]. The refined Ritz vector zj for an approximate desired eigenvalue µj of
A is computed by

min
zj∈Kj(A,p1)
‖zj‖=1

‖Azj − µjzj‖.(4.1)

Since zj ∈ Kj(A, p1), we can represent it in terms of the Lanczos vectors (2.3),
i.e. zj = Pmwj for some unit vector wj . Given βm = ‖f‖, define

Pm+1 := [Pm, pm+1] ∈ Rn×(m+1), Tm+1,m :=

[
Tm
βme

T
m

]
∈ R(m+1)×m,(4.2)

where pm+1 := f/βm. Let Im+1,m denote the first m columns of the identity matrix
of order m + 1. For each µj compute the smallest singular value σ↓j and associated
unit singular vectors of (Tm+1,m − µjIm+1,m) i.e.

(Tm+1,m − µjIm+1,m)vj = σ↓juj(4.3)

(Tm+1,m − µjIm+1,m)Tuj = σ↓jvj .(4.4)

We refer to the following unit vectors vj ∈ Rm as the right singular vector and
uj ∈ Rm+1 as the left singular vector associated with the smallest singular value σ↓j .
Therefore,

min
zj∈Kj(A,p1)
‖zj‖=1

‖Azj − µjzj‖ = min
‖wj‖=1

‖APmwj − µjPmwj‖(4.5)

= min
‖wj‖=1

‖(Pm+1(Tm+1,m − µjIm+1,m)wj‖

= ‖(Tm+1,m − µjIm+1,m)vj‖ = σ↓j .

Then the refined Ritz vector zj for µj is defined as zj := Pmvj . The approximate
eigenvalue can be selected as the Ritz value θj or as the Rayleigh quotient ρj =
zTj Azj = vTj Tmvj . Jia [7] suggested using ρj in place of θj as it may be more accurate.
Setting µj = θj and using (2.6), we have from [7, 9] that

‖Azj − ρjzj‖ ≤ ‖Azj − θjzj‖ ≤ ‖Axj − θjxj‖ = βm|eTmyj |.(4.6)

HYBRID ITERATIVE REFINED METHOD 7

If ‖Axj − θjxj‖ 6= 0, then ‖Azj − θjzj‖ < ‖Axj − θjxj‖. The following discussion
establishes the left inequality for µj not necessarily µj = θj and shows when a strict
inequality exists. This sets the foundation for the subsequent section on iterative
refined Ritz.

Using {ρj , zj} as the approximation, we have the following. Equate the first m
rows of (4.3) and the last row to obtain

(Tm − µjIm)vj = σ↓juj(1 :m)(4.7)

βme
T
mvj = σ↓juj(m+1)(4.8)

and left multiply (4.7) by vTj to obtain

µj − ρj = −σ↓jvTj uj(1 :m).(4.9)

Then using the relationships (4.7)–(4.9) we have,

Azj = APmvj = PmTmvj + feTmvj(4.10)

= ρjzj + σ↓jPm+1(uj − ([vj ; 0]Tuj)[vj ; 0])

where [vj ; 0] ∈ Rm+1. Using (4.10) we have,

‖Azj − ρjzj‖ = σ↓j‖Pm+1(uj − ([vj ; 0]Tuj)[vj ; 0])‖(4.11)

= σ↓j‖uj − ([vj ; 0]Tuj)[vj ; 0]‖
≤ σ↓j .

The inequality in (4.11) comes from using the orthogonal projection, as summarized
in Lemma A.1 in the appendix. A strict inequality ‖Azj−ρjzj‖ < σ↓j exists if µj 6= ρj
then [vj ; 0]Tuj 6= 0 in (4.9), also see Lemma A.1.

Notice from (4.9) and (4.10) we have

Azj = APmvj = (ρj − σ↓jvTj uj(1 :m))zj + σ↓jPm+1uj(4.12)

= µjzj + σ↓jPm+1uj

and ‖Azj − µjzj‖ = σ↓j‖Pm+1uj‖ = σ↓j . Therefore, we have

‖Azj − ρjzj‖ ≤ ‖Azj − µjzj‖(4.13)

and if µj 6= ρj then ‖Azj − ρjzj‖ < ‖Azj − µjzj‖. The relationship and convergence
properties of the refined Ritz vector zj and Ritz vector xj are described in detail in
[9, 10, 17]. In particular, they show, when σ↓j = 0, the vectors zj and xj are parallel
to an eigenvector of A and ρj = θj is an exact eigenvalue of A. It is remarked in [17]
that for a special, non–symmetric case, that zj and xj can be parallel, even though
σ↓j 6= 0. However, this is not the case in the context here for the symmetric problem,
as Theorem 4.2 below demonstrates. First, Corollary 4.1 is established.

Corollary 4.1. Let Tm (2.4) be unreduced and βm 6= 0. Given the singular
value relationships (4.3) and (4.4) we have
i.) σ↓j 6= 0 and
ii.) uj 6= ±em+1.

Proof. i.) To show that σ↓j 6= 0, we argue via contradiction. Let σ↓j = 0, then
from (4.7) and (4.8) we have,

(Tm − µjIm)vj = 0(4.14)

βme
T
mvj = 0.(4.15)

8 J. BAGLAMA, T. BELLA, J. PICUCCI

Given βm 6= 0, we have from (4.15) eTmvj = 0 and since Tm is unreduced, eTmvj 6= 0,
c.f. [16, Theorem 7.9.3].
ii.) To show that uj 6= ±em+1, we also argue via contradiction. Let uj = ±em+1.
Then from (4.3) and (4.4) we have,

(Tm − µjIm)vj = 0(4.16)

±βmem = σ↓jvj .(4.17)

Given βm 6= 0, we have from (4.17) that vj = ±em. Then from (4.16), we have
βm−1 = 0. Contradiction to Tm being unreduced.

Theorem 4.2. Let Tm (2.4) be unreduced and βm 6= 0. Given the singular value
relationships (4.3) and (4.4) with µj = θj. Then zj 6= ±xj.

Proof. To show that zj 6= ±xj , we argue via contradiction. Let xj = ±zj then
yj = ±vj . From (4.7) and Corollary 4.1 we have

0 = (Tm − θjIm)yj = ±(Tm − θjIm)vj = ±σ↓juj(1 :m) 6= 0.(4.18)

Therefore, the refined Ritz and Ritz vectors do not coincide until σ↓j = 0.
Define

rj := uj − ([vj ; 0]Tuj)[vj ; 0](4.19)

and notice that the refined Ritz vector and residual vectors satisfy zTj (Pm+1rj) = 0.
This is a requirement for restarting. Then from (4.10) we have similar to (3.1) for
j = 1, . . . , k,

Azj = ρjzj + σ↓jPm+1rj .(4.20)

However, the setup of the thick–restarted method as described in section 3 cannot
be used with {ρj , zj} in this context, since the residual vectors σ↓jPm+1rj are not
multiples of each other for different refined Ritz pairs {ρj , zj}. This is shown in
Theorem 4.3. Below is a needed relationship before establishing the result. Notice
from (4.3), (4.9), and (4.19) that[

Tm − ρjIm
βme

T
m

]
vj = σ↓jrj(4.21)

and if {ρj , vj} is not an eigenpair of Tm then σ↓j(uj(1 :m)− (vTj uj(1 :m))vj) 6= 0.

Theorem 4.3. Given refined Ritz pairs {ρj1 , zj1} and {ρj2 , zj2} with ρj1 6= ρj2
satisfying (4.20) and {ρj1 , vj1} and {ρj2 , vj2} not eigenpairs of Tm, we have
σ↓j1Pm+1rj1 6= γσ↓j2Pm+1rj2 for any scalar γ.

Proof. To show that σ↓j1Pm+1rj1 6= γσ↓j2Pm+1rj2 , we argue via contradiction. Let
σ↓j1Pm+1rj1 = γσ↓j2Pm+1rj2 where γ 6= 0. Then from multiplying (4.20) with j = j2
from the left by zTj1 and then by zTj2 when j = j1 gives the relationships vTj1Tmvj2 −
ρj2v

T
j1
vj2 = 0 and vTj2Tmvj1 − ρj1v

T
j2
vj1 = 0. Since ρj1 6= ρj2 this implies vTj2Tmvj1 = 0

and vTj2vj1 = 0. From (4.21) we have (Tm − ρj1Im)vj1 = γ(Tm − ρj2Im)vj2 6= 0 and

βme
T
mvj1 = γβme

T
mvj2 . Therefore,

0 < vTj1(Tm − ρj1Im)(Tm − ρj1Im)vj1 = γvTj1(Tm − ρj1Im)(Tm − ρj2Im)vj2

= γvTj1T
2
mvj2 .

HYBRID ITERATIVE REFINED METHOD 9

For vj1 from (4.3) and (4.4) we have ((Tm−µj1Im)(Tm−µj1Im)+β2
meme

T
m)vj1 = σ↓2j1vj1

and after left multiplying by vTj2 we get γvTj1T
2
mvj2 = −β2

mγ
2(eTmvj2)2 < 0.

A restarted technique such as setting the starting vector p1 in Algorithm 2.1 as
a linear combination of k desired approximate refined Ritz vectors can be used, see
[6]. We propose a different linear combination with constants chosen in a similar
fashion outlined in [14]. Before presenting our restarted scheme, we will first focus on
adjusting the refined Ritz vectors to reduce the residual norm. We also include some
results and motivational remarks.

5. Iterative Refined Ritz vectors. Considering the refined Ritz pair {ρj , zj}
may provide a better approximation by having a “smaller” norm (4.6) when used
together, we propose iteratively refining the approximation. That is, set µj = ρj in
(4.1) and re–compute the refined Ritz vectors as stated in (4.5) with the updated µj .
This process can be repeated and creates an iterative scheme with a sequence of refined

Ritz pairs, {ρ(i)j , z
(i)
j } for i = 1, 2, The process terminates with a refined Ritz pair

{ρ̂j , ẑj} that has favorable properties. We will refer to {ρ̂j , ẑj}, as the iterative refined
Ritz value and vector respectively, and collectively as the iterative refined Ritz pair.
Algorithm 5.1 outlines the computational process which we follow up with remarks.
To show convergence, and hence termination of the iterative scheme, we establish

via Theorem 5.1 that the nonnegative sequence σ↓
(i)
j computed from this process is

bounded, decreasing, and hence converges. Let σ̂↓j be the value to which the sequence

σ↓
(i)
j converges.

Theorem 5.1. Let µj = ρ
(i−1)
j with ρ

(0)
j = θj, z

(i)
j = Pmv

(i)
j , and ρ

(i)
j = z

(i)
j

T
Az

(i)
j

for i = 1, 2, Then the computed smallest singular values σ↓
(i)
j for i = 1, 2, . . .

from the equations (4.3) and (4.4) to solve (4.1) is a nonnegative bounded decreasing
sequence and hence converges.

Proof. We compute

0 ≤ σ↓(i+1)
j = σ↓

(i+1)
j ‖u(i+1)

j ‖ = ‖σ↓(i+1)
j u

(i+1)
j ‖(5.1)

= ‖(Tm+1,m − ρ(i)j Im+1,m)v
(i+1)
j ‖

≤ ‖(Tm+1,m − ρ(i)j Im+1,m)v
(i)
j ‖.

We have the inequality in (5.1) since v
(i+1)
j satisfies the minimization property in

(4.5) when µj = ρ
(i)
j . Note that v

(i)
j satisfies the minimization property in (4.5) when

µj = ρ
(i−1)
j , therefore we have

(Tm+1,m − ρ(i−1)j Im+1,m)v
(i)
j = σ↓

(i)
j u

(i)
j(5.2)

Tm+1,mv
(i)
j = σ↓

(i)
j u

(i)
j + ρ

(i−1)
j Im+1,mv

(i)
j .

From (4.9) we have

ρ
(i)
j − ρ

(i−1)
j = σ↓

(i)
j v

(i)
j

T
uj(1 :m)

(i).(5.3)

10 J. BAGLAMA, T. BELLA, J. PICUCCI

Plugging (5.2) and (5.3) into (5.1) and continuing (5.1) we have

0 ≤ σ↓(i+1)
j ≤‖Tm+1,mv

(i)
j − ρ

(i)
j Im+1,mv

(i)
j ‖(5.4)

=σ↓
(i)
j ‖u

(i)
j − ([vj ; 0](i)

T
u
(i)
j)[vj ; 0](i)‖

≤σ↓(i)j .

The last inequality in (5.4) comes from using Lemma A.1. A strict inequality exists

if ([vj ; 0](i)
T
u
(i)
j) 6= 0, see Lemma A.1.

Notice from (4.11) and (5.4) we have

‖Az(i+1)
j − ρ(i+1)

j z
(i+1)
j ‖ ≤ σ↓(i+1)

j(5.5)

≤ σ↓(i)j ‖u
(i)
j − ([vj ; 0](i)

T
u
(i)
j)[vj ; 0](i)‖

= ‖Az(i)j − ρ
(i)
j z

(i)
j ‖

which implies {ρ(i+1)
j , z

(i+1)
j } can be a better approximation than {ρ(i)j , z

(i)
j }. If σ↓

(i)
j =

0 for some i we have from (5.5) that {ρ(i)j , z
(i)
j } is an exact eigenpair of A. We assume

for the remainder of the section that 0 < σ̂↓j ≤ σ↓
(i)
j .

Another point of view of the equations (4.3) and (4.4) is as an eigenvalue problem.
In this context, define H(µj) := (Tm−µjIm)(Tm−µjIm)+β2

meme
T
m where µj = ρj =

vTj Tmvj is a function of the unit vector vj . Therefore, we have

H(vj)vj = σ↓2jvj(5.6)

and we are searching for the smallest eigenvalue σ↓2j and associated unit eigenvector
vj . The vector uj can be obtained by

uj = 1/σ↓j(Tm+1,m − µjIm+1,m)vj .(5.7)

Equation (5.6) is referred to as an eigenvector–dependent nonlinear eigenvalue prob-
lem (NEPv) and the most commonly used routine for solving (5.6) is the simple
self-consistent field (SCF) iteration process, see [3] and reference within.

The computation of iterative refined values is outlined in the Iterative Refined
Algorithm 5.1. We assume m� n and the computational time required per iteration
for Algorithm 5.1 is negligible in comparison to the computational time required for
a matrix–vector product with A when n is very large. There are several options for

Algorithm 5.1 Iterative Refined

1: Input: Tm+1,m ∈ Rm+1×m (4.2) and {µj}kj=1

2: Output: {ρ̂j , v̂j , ûj , σ̂↓j}kj=1

3: for j = 1, 2, . . . , k do
4: for i = 1, 2, . . . ,maxit do

5: Compute v
(i)
j , u

(i)
j , and σ↓

(i)
j using either (4.3) and (4.4) or (5.6) and (5.7)

6: Set ρ
(i)
j := v

(i)
j

T
Tmv

(i)
j

7: Check convergence

8: Set µj := ρ
(i)
j

HYBRID ITERATIVE REFINED METHOD 11

step 7 in Algorithm 5.1 on checking convergence. For example, convergence can be

checked by |ρ(i)j − ρ
(i−1)
j |/|ρ(i)j | < eps, where eps is machine epsilon. Some heuristics

for stopping are provided in [3] and references within when using the SCF iteration
to solve NEPv (5.6). It should be noted that stagnation can occur while using finite
arithmetic and we propose including a check to exit when detected to avoid unneces-
sary iterations. As the restarted hybrid method presented in section 6 converges we
notice via numerical experiments the number of iterations in Algorithm 5.1 reduce
quickly to only a handful.

We see from Theorem 5.1 and the relationship σ↓2j = vTj H(vj)vj that the output
{ρ̂j , v̂j , ûj , σ̂↓j} from Algorithm 5.1 satisfies

(Tm+1,m − ρ̂jIm+1,m)v̂j = σ̂↓j ûj(5.8)

(Tm+1,m − ρ̂jIm+1,m)T ûj = σ̂↓j v̂j(5.9)

where ρ̂j = v̂Tj Tmv̂j . Equate the first m rows of (5.8) and left multiply by v̂Tj to get

σ̂↓j v̂
T
j ûj(1 :m) = 0.(5.10)

Using (4.19), (4.20), and (5.10) we have

Aẑj = ρ̂j ẑj + σ̂↓jPm+1ûj ,(5.11)

where ẑj = Pmv̂j and ẑTj Pm+1ûj = 0. Notice from (4.6), (5.5), and (5.11)

σ̂↓j = ‖Aẑj − ρ̂j ẑj‖ ≤ ‖Azj − ρjzj‖ ≤ ‖Azj − θjzj‖ ≤ ‖Axj − θjxj‖.(5.12)

Notice that in floating point arithmetic we have σ̂↓j v̂
T
j ûj(1 :m) ≈ 0 and should be

included in equation (5.11) when used in computer codes, c.f. (4.20). It is not included
in establishing subsequent results and equations, i.e. we assume (5.10) holds.

Although the results listed in [9, 10, 17] were developed for refined Ritz and Ritz
pairs when µj = θj , we see from the relationships (5.5) and (5.12) that similar results
apply for iterative refined Ritz. In particular, we have when σ̂↓j = 0, vectors ẑj and
xj are parallel to an eigenvector of A and ρ̂j = θj is an exact eigenvalue of A. Notice
that Corollary 4.1 does not depend on µj = θj , however Theorem 4.2 depended on
setting µj = θj , therefore we state the result in this context for ẑj .

Theorem 5.2. Let Tm (2.4) be unreduced and βm 6= 0. Given the singular value
relationships (5.8) and (5.9), then ẑj 6= ±xj.

Proof. To show that ẑj 6= ±xj , we argue via contradiction. Let xj = ±ẑj then
yj = ±v̂j and ρ̂j = v̂Tj Tmv̂j = yTj Tmyj = θj . From (5.8) and Corollary 4.1 we have

0 = (Tm − θjIm)yj = ±(Tm − ρ̂jIm)v̂j = ±σ̂↓j ûj(1 :m) 6= 0(5.13)

Therefore, the iterative refined Ritz and Ritz vectors do not coincide unless σ̂↓j = 0.
Theorem 4.3 also does not depend on µj = θj and the result holds in this context.
That is, the set–up of the thick–restarted method as described in section 3 cannot
be used with {ρ̂j , ẑj} in this context, since the residual vectors σ↓jPm+1r̂j are not
multiples of each other for different iterative refined pairs {ρ̂j , ẑj}. The iterative
refined Ritz pair have a “smaller” residual norm and possess similar properties to
the refined Ritz pair. The following examples provide motivation on our restarting
technique.

12 J. BAGLAMA, T. BELLA, J. PICUCCI

Example 5.1 Let A be the 4× 4 symmetric matrix,

(5.14) A =


9 1 −2 1
1 8 −3 −2
−2 −3 7 −1

1 −2 −1 6

 .
The eigenvalues of A are 12, 9, 6, 3. Using MLan(0) Algorithm 2.1 with p1 =
1
2 [1 1 1 1]T and m = 3, gives a tridiagonal matrix T3 with eigenvalues θ1 = 11.7913,
θ2 = 7.4755, θ3 = 3.0239, and β3 = 1.8035. We have for the largest eigenpair,

σ̂↓1 = 0.831397 < σ↓1‖r1‖ = 0.831400 < β3|eT3 y1| = 0.885392(5.15)

where µ1 = θ1 in Algorithm 5.1. Equation (5.15) shows the residual norm with
iterative refined pair is “smaller”, with similar results for the other eigenpairs. In
practice, the matrix A is very large and restarting is required. A restarted Lanczos
method depends on many things for successful complementation, one of which is a
“good” (re)starting vector. For a fair comparison, Table 5.1 displays the Ritz residual
norms β3|eT3 y1| associated with {θ1, y1} for A where we set the (re)starting vector p1
in MLan(0) Algorithm 2.1 on the next restart to be the computed iterative refined
Ritz P3v̂1, refined Ritz P3v1, and Ritz vector P3y1. Also, included in Table 5.1 is the
sine of the angle for each vector P3v̂1, P3v1, and P3y1 with the desired eigenvector
x associated with the largest eigenvalue 12 of the matrix A. It should be noted that
Krylov subspaces associated with each column in Table 5.1 are different, since they
depend on the starting vector. However, we do see from Table 5.1 that using the
iterative refined Ritz vector P3v̂1 we are able to obtain a smaller Ritz residual norm
on each restart and a starting vector “closer” to the desired eigenvector. Although the
results for iterative refined Ritz norms and angles may appear to be only marginally
smaller than refined Ritz norms, in a restarted scheme for large matrices this can be
significant.

Table 5.1
Example 5.1. Displays the Ritz residual norms β3|eT3 y1| (2.6) associated with {θ1, y1} for

different (re)starting vector p1 in MLan(0) Algorithm 2.1 on the next restart. Also, displays the
sine of the angle for each vector with the eigenvector x associated with the largest eigenvalue 12.

Restart Iterative refined Ritz Refined Ritz Ritz

β3|eT3 y1| sin∠(x, P3v̂1) β3|eT3 y1| sin∠(x, P3v1) β3|eT3 y1| sin∠(x, P3y1)

1 2.4589 · 10−2 2.8770 · 10−3 2.4820 · 10−2 2.9060 · 10−3 6.6286 · 10−2 7.8691 · 10−3

2 7.0237 · 10−4 2.0977 · 10−4 7.1591 · 10−4 2.1353 · 10−4 2.1557 · 10−3 5.7290 · 10−4

3 1.8391 · 10−5 2.1518 · 10−6 1.8918 · 10−5 2.2148 · 10−6 1.5244 · 10−4 1.8096 · 10−5

4 5.2531 · 10−7 1.5699 · 10−7 5.4567 · 10−7 1.6187 · 10−7 4.9572 · 10−6 1.3167 · 10−6

Example 5.1 is a good illustrative example that shows that we can get better
results with iterative refined Ritz vectors. However, this example’s features are ideal
with well–separated eigenvalues of A and large Tm (m = 3 compared with n = 4) that
yields a good approximation to all eigenpairs on the first iteration. In practice, A
will be very large, m� n, and the corresponding generated Krylov subspace yielding
a poor approximation to the desired eigenpairs. When m is kept very small we
experienced very poor results, often with stagnation. This can be contributed in part
to an overall poor approximation from the Krylov subspace and the computational
process of refined or iterative refined Ritz values. The following example illustrates
this undesirable scenario.

HYBRID ITERATIVE REFINED METHOD 13

Example 5.2 Let A be the 3× 3 symmetric matrix,

(5.16) A =

 0.0025 0.0485 0
0.0485 2.1509 2.3
0 2.3 0

 .
The eigenvalues of A are 3.6149, 2.4989·10−3, and −1.4640. Using MLan(0) Algorithm
2.1 on matrix A with p1 = [1 0 0]T and m = 2, yields a matrix T3,2 that consist
of the first 2 columns of A, with eigenvalues of T3,2(1: 2, 1: 2) as θ1 = 2.1520 and
θ2 = 0.0014. We used Algorithm 5.1 with µ1 = θ1 = 2.1520 for computing refined
Ritz and iterative refined Ritz pairs. Table 5.2a below displays the output of the
refined Ritz ρ1 and iterative refined ρ̂1 values and the sine of the angles between the
eigenvector x associated with the largest eigenvalue 3.6149, and the eigenvectors y1
and y2, associated with θ1 and θ2, respectively. We see that refined Ritz pair {ρ1, v1}
and iterative refined Ritz pair {ρ̂1, v̂1} are “closer” to {θ2, y2} than {θ1, y1} even
though approximations set µ1 = θ1. This can cause a restarted method with refined
Ritz or iterative refined Ritz to stagnate or converge slowly. See Table 5.2b where
we set the (re)starting vector p1 in MLan(0) Algorithm 2.1 on the next restart to be
the computed iterative refined Ritz P2v̂1, refined Ritz P2v1, and Ritz vector P2y1.
The initial iterative refined Ritz pair is very close to the undesired value {θ2, y2}
and the process cannot recover, causing stagnation. The initial refined Ritz pair is
not as close, and does recover, however the overall convergence is a lot slower than
using Ritz vector to restart. Also, the computed refined Ritz residual σ↓1‖r1‖ for the
method that restarts with refined Ritz vector was only marginally better, e.g. on
restart 4 with refined Ritz vector method we have σ↓1‖r1‖ = 5.3081 · 10−5 (compared
to β2|eT2 y1| = 5.3121 · 10−5). In this example, notice that the initial Ritz vector
is significantly closer to the desired eigenvector x and restarting with Ritz vector
converges a lot faster.

Table 5.2
Example 5.2.

Iterative Refined Ritz ρ̂1 = 0.0017 Refined Ritz ρ1 = 0.0655 Ritz

sin∠(x, P2v̂1) sin∠(y1, v̂1) sin∠(y2, v̂1) sin∠(x, P2v1) sin∠(y1, v1) sin∠(y2, v1) sin∠(x, P2y1)

1.000 0.0120 0.9999 0.9904 0.1727 0.9850 0.5368

(a) Display results when using Algorithm 5.1 with µ1 = θ1 = 2.1520 applied to T3,2. Also, displays
the sine of the angle for each vector with the eigenvector x associated with the largest eigenvalue
3.6149.

Restart Iterative refined Ritz Refined Ritz Ritz

β2|eT2 y1| sin∠(x, P2v̂1) β2|eT2 y1| sin∠(x, P2v1) β2|eT2 y1| sin∠(x, P2y1)

1 1.2276 · 100 9.9998 · 10−1 9.0575 · 10−1 1.8281 · 10−1 2.7847 · 10−2 7.7072 · 10−3

2 2.2985 · 100 1.0000 · 100 3.5993 · 10−2 9.9344 · 10−3 3.3735 · 10−4 6.6449 · 10−5

3 1.2275 · 100 1.0000 · 100 1.3828 · 10−3 2.7442 · 10−4 2.9083 · 10−6 8.0490 · 10−7

4 2.2983 · 100 1.0000 · 100 5.3121 · 10−5 1.4661 · 10−5 3.5229 · 10−8 6.9394 · 10−9

(b) Displays the Ritz residual norms β2|eT2 y1| (2.6) associated with {θ1, y1} for different (re)starting
vector p1 in MLan(0) Algorithm 2.1 on the next restart. Also, displays the sine of the angle for
each vector with the eigenvector x associated with the largest eigenvalue 3.6149.

Although the example 5.2 is contrived, it illustrates what can happen. The next
example further illustrates the problem.

14 J. BAGLAMA, T. BELLA, J. PICUCCI

Example 5.3 Let A = diag(1 :500) be a 500 × 500 diagonal matrix. We are
searching for the largest eigenpair. We set m = 2 and the (re)starting vector p1 in
MLan(0) Algorithm 2.1 on the next restart to be the computed Ritz vector P2y1,
refined Ritz P2v1, or iterative refined Ritz P2v̂1. We ran the example 100 times with
a different beginning random vector p1. The results are presented in Figure 5.1a,
Figure 5.1b, and Figure 5.1c and show that restarting with iterative refined Ritz P2v̂1
or refined Ritz P2v1 caused stagnation, or erratic behavior and slow convergence.
Restarting with Ritz vector, Figure 5.1a was not erratic, but convergence was slow.

Example 5.1 showed that when Krylov subspace was a fairly “good” subspace that
restarting with iterative refined Ritz vector provided the better results. However, ex-
amples 5.2 and 5.3 demonstrated the pitfalls of using a conventional restarting scheme
with just (iterative) refined Ritz vectors when the Krylov subspace was a “poor” sub-
space. Although examples 5.2 and 5.3 may show that the iterative refined Ritz vectors
to be problematic, the iterative refined Ritz vectors highlight, more so than refined
Ritz vectors, when they should not be used to restart. Using this information and
that restarting with Ritz vectors convergence was not erratic (although slow), we
developed a hybrid method that switches, depending on some parameters, between
thick–restarting with Ritz vectors and restarting with iterative refined Ritz vectors
and show this combination overcomes the stagnation and erratic behavior producing
a faster overall converging method.

6. Hybrid Methods. The hybrid method developed here uses thick–restarted
as the main routine and, under certain conditions, switches to restarting with iterative
refined Ritz vectors. The iterative refined Ritz vectors from a “good” Krylov subspace
can be better approximations, but a trade off is a restarted scheme that loses the
benefits of thick–restarted which are crucial and traced back to the IRL method.
Using only the thick–restarted with a small m value converges very slowly or not
at all. We have found that when the Krylov subspace is “good” that switching to
restarting with iterative refined Ritz vectors, even for a few iterations, results in a
faster overall convergence.

For k = 1 (single eigenpair) restating equations (3.1) and (5.11) for the Ritz pair
{x1, θ1} and the iterative refined Ritz pair {ẑ1, ρ̂1}

Ax1 = [x1, p2]

[
θ1
β̄1

]
where p2 = f/βm(6.1)

Aẑ1 = [ẑ1, p2]

[
ρ̂1
σ̂↓1

]
where p2 = Pm+1û1.(6.2)

Depending on certain parameters for switching described in subsection 6.1, we can
restart by calling the MLan(1) Algorithm 2.1 with starting vector p2. This is slightly
different than a restarted Lanczos method, by using relationships in equations (6.1)
and (6.2) to avoid a matrix–vector product with A on each restart.

The hybrid method for finding k > 1 eigenpairs has added challenges. The thick–
restarted algorithm is set up to compute k ≥ 1 eigenpairs, however the iterative
refined Ritz does not fit this structure. Therefore, we implement a standard restart
technique with a starting vector p1 constructed as a linear combination of k iterative
refined Ritz vectors

p1 =

k∑
j=1

cj ẑj .(6.3)

HYBRID ITERATIVE REFINED METHOD 15

This was the set up for the refined Ritz algorithm [6, Algorithm 1] where the combi-
nation of the refined Ritz vectors for the starting vectors p1 were constructed based
on coefficients cj chosen as described in Saad [18]. In our development, we chose
the coefficients cj in a similar way to the description outlined by Morgan [14]. In
simplest terms, for Ritz vectors xj , constants cj are chosen for a starting vector
p1 = c1x1 + . . .+ ckxk to eliminate the coefficients βme

T
myj multiplying the common

residual vector pm+1. That is, the choice of coefficients removes pm+1 when the start-
ing vector p1 is multiplied by A in the next iteration to build out the Krylov subspace.
The coefficients can be determined by solving a certain homogenous k − 1 × k lin-
ear system. It was then proven by Morgan with these specially chosen coefficients
cj that the span{p1, Ap1, . . . , Ak−1p1} = span{x1, x2, . . . , xk} which is the same sub-
space resulting from implementing Sorensen’s IRA method [21]. We refer the reader
to [14] for specific details and theoretical results. Building on this idea, we can, in a
similar way, remove some of the coefficients associated with pm+1 for iterative refined
vectors. The rationale on implementing this technique is to have a restarted method
that may inherit similar convergence benefits of the IRL method. We did observe fast
convergence, even with removing only some of the coefficients associated with pm+1.

From equations (4.8), (5.11), and (6.3) we have

Ap1 =

k∑
j=1

cj(ρ̂jPmv̂j + βme
T
mv̂jpm+1 + σ̂↓jPmûj(1 :m)).(6.4)

Therefore, we select coefficients cj such that βme
T
mv̂jcj = 0 which removes pm+1 from

(6.4). If we ignore σ̂↓jPmûj(1 :m) in (6.4) and all future occurrences, as we multiple
(6.4) by A we obtain a similar k− 1× k homogenous system linear system to the one
presented in [14, Section 3] where ith row is represented as,

(6.5) βm
[
ρ̂i−11 eTmv̂1 ρ̂i−12 eTmv̂2 . . . ρ̂i−1k eTmv̂k

]
.

If we leave σ̂↓jPmûj(1 :m) in (6.4) and continue with pm+1 removed in (6.4), we have,

A2p1 =

k∑
j=1

cj(ρ̂
2
jPmv̂j + ρ̂j σ̂↓jPmûj(1 :m) + βmρ̂je

T
mv̂jpm+1 + σ̂↓j APmûj(1 :m))(6.6)

where

σ̂↓j APmûj(1 :m) = σ̂↓jPmTmûj(1 :m) + βm(eTmTmv̂j − ρ̂jeTmv̂j)pm+1.(6.7)

Collecting terms multiplying pm+1 in (6.6) and (6.7) we have,

(βmρ̂je
T
mv̂j + βm(eTmTmv̂j − ρ̂jeTmv̂j))cj = βme

T
mTmv̂jcj .(6.8)

We therefore select coefficients cj such that βme
T
mTmv̂jcj = 0 which removes pm+1

from (6.6). If we ignore σ̂↓jPmTmûj(1 :m) in (6.7) and all future occurrences, as we
multiply (6.4) by A we obtain the following k−1×k homogenous system linear system
where coefficient matrix has the same first row as in (6.5) and is represented as,

(6.9) βm

[
eTmv̂1 eTmv̂2 . . . eTmv̂k

ρ̂i−21 eTmTmv̂1 ρ̂i−22 eTmTmv̂2 . . . ρ̂i−2k eTmTmv̂k

]
i > 1.

Notice from (5.8) that as σ̂↓j approaches zero, we expect Tmv̂j to approach ρ̂j v̂j and
(6.9) would become like the homogenous system (6.5). If we leave σ̂↓jPmTmûj(1 :m) in

16 J. BAGLAMA, T. BELLA, J. PICUCCI

(6.7) and continue to remove pm+1 we get the k − 1 × k homogenous linear system
where coefficient matrix has the same first two rows as in (6.9) and is represented as,

(6.10) βm

 eTmv̂1 eTmv̂2 . . . eTmv̂k
eTmTmv̂1 eTmTmv̂2 . . . eTmTmv̂k

ρ̂i−2
1 eTmTmv̂1 + s1 ρ̂i−2

2 eTmTmv̂2 + s2 . . . ρ̂i−2
k eTmTmv̂k + sk


i > 2

where

sj = σ̂↓j

i∑
`=3

ρ̂i−`j eTmT
`−2
m ûj(1 :m) 1 ≤ j ≤ k.(6.11)

Likewise, as σ̂↓j approaches zero, we expect Tmv̂j to approach ρ̂j v̂j and sj to approach
zero, hence (6.10) would also become like the homogenous system (6.5). The matrices
become more complicated and ill–conditioned as we include more terms for eliminating
the coefficients multiplying pm+1. We do assume that k is small and have observed
similar results with all three systems, but more consistent results over a wide range
of problems when using (6.9) or (6.10). We solved the k − 1 × k homogenous linear
system by finding the null space vector using the singular value decomposition. When
a column becomes numerically zero, indicating an iterative refined Ritz vector has
converged, we remove that column and the last row of the matrix and compute the
null space vector of the reduced matrix. We then replace the corresponding coefficient
with the norm of the iterative refined Ritz residual vector before creating the linear
combination for restart.

Notice that when restarting with the linear combination of iterative refined Ritz
vectors, a single matrix–vector product can be saved per iteration by utilizing the
relationship (6.4) before restarting. Setting p1 = p1/‖p1‖ and setting f̃ to be right
side of the equality in (6.4) multiplied by 1/‖p1‖ we have Ap1 = f̃ , α̃1 = pT1 f̃ and
f̃ = f̃ − p1α̃1, β̃1 = ‖f̃‖ and

Ap1 = [p1, p2]

[
α̃1

β̃1

]
(6.12)

where p2 = f̃/β̃1. The MLan(1) Algorithm 2.1 can be continued with p2. Algorithm
6.1 outlines the hybrid method.

6.1. Hybrid Thick–Restarted and Iterative Refined Ritz Algorithm.
Hybrid Thick–Restarted and Iterative Refined Ritz Algorithm 6.1 presents the main
algorithm of the paper. Algorithm 6.1 starts with the efficient thick–restarted routine.
We provide parameters as to when restarting with iterative refined Ritz vectors can
be used. The parameters were chosen from numerous experiments on a variety of
problems. A careful balance is needed, since the iterative refined Ritz vectors can give
a better approximation when the Krylov subspace is “good”, but thick–restarted is a
more efficient restarting scheme, but often has slower convergence. Also, as illustrated
in Example 5.2 in section 5, the iterative refined Ritz pair may be “closer” to a different
Ritz pair of Tm than the originally sought after Ritz pair. Therefore, since m is kept
small relative to k we suggest using thick–restarted for the beginning iterations to
build a more accurate approximation subspace, i.e. until max

1≤j≤k
|β̄j | ≤ ε0.1‖A‖ where ε

is a user input tolerance for overall convergence and β̄j is from (3.1). We then check
the angle via inner product between ẑj and xj , i.e. between v̂j and yj . If the angle is
acceptable we use iterative refined Ritz vector(s) to restart. Numerous experiments

HYBRID ITERATIVE REFINED METHOD 17

suggest using min
1≤j≤k

|yTj v̂j | > 0.9. However, when k > 1 these conditions alone do not

always prevent missing eigenvalues. One solution is to also require the input value µj

into Iterative Refined Algorithm 5.1 to be the best approximation eigenvalue of A over
all computed θj ’s values thus far and to reject using restarting with iterative refined
Ritz vectors if the current computed ρ̂j are not “better” than the past iteration’s
best approximation. For example, during a current iteration (iter) of Algorithm 6.1,
if searching for the k largest in magnitude eigenpairs, we require in step 5 for the call
to Algorithm 5.1 that

µj = max
1 ≤ i ≤ iter

|θ(i)j | for 1 ≤ j ≤ k(6.13)

and for step 7

|ρ̂(iter)j | ≥ max
1 ≤ i ≤ iter-1

|θ(i)j | for 1 ≤ j ≤ k.(6.14)

Similar requirements are made for other desired extreme eigenvalue locations. When
k = 1 we found that using (6.13) was a needed requirement for the best results, but
encountered poor convergence results when enforcing (6.14) with m = 2, see Examples
7.4 and 7.5 in section 7. The following example illustrates the methods presented.

Algorithm 6.1 Hybrid Thick–Restarted and Iterative Refined Ritz

1: Input: A ∈ Rn×n: symmetric matrix,
p1 ∈ Rn: orthonormal vector,
ε: usr specified tolerance,
δ1: usr specified tolerance on when switching can start

(recommended: δ1 := ε0.1),
δ2: usr specified tolerance on when vectors are “close”

(recommended: δ2 := 0.9),
k: number of desired eigenpairs of A,
m: maximum number of Lanczos vectors.

2: Output: k approximate desired eigenpair(s) of A.
3: Compute factorization (2.2) by MLan(0) Algorithm 2.1
4: Compute the k desired eigenpair {θj , yj}kj=1 of Tm (2.4) or T̄m (3.8)

5: Compute {ρ̂j , v̂j , ûj , σ̂↓j}kj=1 by Iterative Refined Algorithm 5.1 with e.g. µj (6.13)
6: Check convergence (2.7) or (7.1)
7: if all ρ̂j converged in Algorithm 5.1 and satisfy e.g. (6.14) then
8: if max

1≤j≤k
|β̄j | ≤ δ1‖A‖ and min

1≤j≤k
|xTj ẑj | > δ2 then

9: if k > 1 then compute cj from (6.5), (6.9) or (6.10)

10: Restart with iterative refined (6.2) or (6.12) via MLan(1) Algorithm 2.1
11: else
12: Restart with Ritz (6.1) or (3.3) via MLan(k) Algorithm 2.1

13: Goto 4

Example 6.1 Let A be the 256,000 × 256,000 matrix Lin from the SuiteSparse
Matrix Collection [4]. The largest in magnitude eigenvalue is 1063.63 and the next
three largest in magnitude are 1063.32, 1063.31, and 1062.98. We set m = 15 and
k = 1 and k = 4. We compared Thick–Restarted Ritz Algorithm 3.1 with Algorithm
6.1. For k = 1 we also included the restarted refined Ritz as described in [6, Algorithm

18 J. BAGLAMA, T. BELLA, J. PICUCCI

0 500 1000 1500 2000
10-6

10-4

10-2

100

102

0 500 1000 1500 2000 2500 3000
10-6

10-4

10-2

100

102

Fig. 6.1. Example 6.1. Matrix A is the 256, 000 × 256, 000 matrix Lin from the SuiteSparse
Matrix Collection [4]. Algorithm 6.1 converges faster than the other restarted methods.

1]. We did not include restarted refined Ritz for k = 4 as the method did not
converge within 3000 matrix-vector products. We used the same starting vector for
each routine, a normalized random vector and a stopping criteria 10−8‖A‖. For
fair comparisons, we recorded the Ritz norm residual ‖Ax1 − θ1x1‖ for k = 1 and
max ‖Axi − θixi‖ for k = 4. For k = 4 we compared results using Algorithm 3.1
with Algorithm 6.1 using (6.5), (6.9), and (6.10). We also computed the coefficients
in (6.3) using Saad’s method [18] indicated by Algorithm 6.1 (S) in the legend. The
graphs in Figure 6.1 show that Algorithm 6.1 with (6.9) and (6.10) outperforms the
other routines. Numerical comparison with this matrix with other routines is given
in Example 7.3 in section 7.

Example 6.2 Revisiting Example 5.3 where A = diag(1:500) a 500×500 diagonal
matrix and m = 2. Figures 5.1a, 5.1b, and 5.1c showed for 100 restarts we had
stagnation, or erratic behavior and no convergence within 500 matrix-vector products
using Ritz vector P2y1, refined Ritz P2v1 or iterative refined Ritz P2v̂1 as the restarting
vector in MLan(0) Algorithm 2.1. Figure 5.1e, Algorithm 6.1, with 100 random
restarts always converged within tolerance 10−8‖A‖ with no more than 170 matrix-
vector products and typical convergence between 100 and 150 matrix-vector products.
We also modified Algorithm 6.1 to call Algorithm 5.1 to compute refined Ritz vectors.
All other parameters, in Algorithm 6.1 remained the same. Figure 5.1d displays the
results and shows using refined Ritz vectors in place of iterative refined Ritz vectors
performed poorly.

7. Numerical Examples. This section presents some numerical examples that
illustrate the performance of Algorithm 6.1. For ease of comparisons we implemented
Algorithm 6.1 in a MATLAB code called trreigs1. We compare our method to
the publicly available MATLAB code irbleigs[1]1, the MATLAB interfaced code
primme eigs[22]2, and MATLAB’s built–in function eigs. We refer the reader to the
citations and noted websites for full details and descriptions of parameters. There are
numerous selections and varieties of combinations of parameters for each code. Some
choices and combinations yield faster convergence than others. We cannot provide
examples with all possible combinations. We used either the default values for the
parameters or parameter choices that represent the fairest comparison with respect to
Lanczos basis size and similarity with respect to the foundational Lanczos method for

1Code available at: http://www.math.uri.edu/∼jbaglama
2Code available at: https://github.com/primme/primme

http://www.math.uri.edu/~jbaglama
https://github.com/primme/primme

HYBRID ITERATIVE REFINED METHOD 19

trreigs. All examples and methods used a common unit length vector with random
entries that are normally distributed entries with zero mean.

The parameters for trreigs are based on Algorithm 6.1. For all examples we set
δ1 := ε0.1, δ2 := 0.9, and maximum iterations 100 for Algorithm 5.1. The number of
eigenpairs k, maximum size of the Lanczos basis m, tolerance for convergence ε, and
location of eigenvalues are set depending on the example. In addition to checking the
Ritz residual norm (2.7) for termination, the code trreigs also checks

‖APmq̂j − ρ̂jPmq̂j‖ =
√

(Tmq̂j − ρ̂j q̂j)T (Tmq̂j − ρ̂j q̂j) + β2
m(eTmq̂j)

2 ≤ ε‖A‖(7.1)

where q̂j is the jth column of the QR factorization of [v̂1, . . . , v̂k]. We use the QR fac-
torization to ensure that the eigenvectors are orthogonal. Furthermore, to help avoid
the pitfalls of Example 5.2, we only check (7.1) when |xTj ẑj | > δ2. The technique of
including additional vectors (> k) can greatly accelerate the convergence in restarted
methods, like thick–restarting with Ritz vectors. There are many strategies for de-
termining the number of restart vectors, see e.g. [24, 26]. A comparison of heuristic
techniques is given in [26]. We implemented a simple but often effective strategy when
the hybrid scheme uses thick–restarted, we restart with

(7.2) k = max(floor(nc + (m− nc)/2), k)

vectors where nc is the number of converged desired approximate eigenvectors. How-
ever, using more than k vectors in the restarting scheme for iterative refined part
was found to be counterproductive, often not satisfying the criteria in Algorithm 6.1
for switching. Since m � n the code trreigs uses full reorthogonalization as out-
lined in step 8 of Algorithm 2.1. This is is a simple strategy, but can increase overall
computational times.

The MATLAB code irbleigs is a block Lanczos method that uses the implicitly
restarted formulas to apply Leja points as shifts. Given a Lanczos basis with m blocks,
the method applies m Leja shifts via the implicit shift formulas until a single block of
vectors is obtained and then restarts. Although the method utilizes implicit formulas
for applying shifts to obtain a starting block, the overall structure can be considered
an explicit restarted Lanczos method. For fair comparisons, irbleigs should be
restricted to block size one, however that restriction often caused abnormally large
number of matrix–vector products or no convergence. Therefore, in order to provide
the fairest comparison with irbleigs, when appropriate, we recorded results with
block size greater than one where the combination with the number of blocks is equal
to the maximum size of the Lanczos basis m. Block size and number of blocks for
irbleigs are reported in Table 7.1 as (block size, number of blocks). The common
starting vector is used, where the rest of the starting block is filled in with random
vectors. Besides the number k of desired eigenpairs and tolerance for convergence we
used the default settings for all other parameters.

MATLAB’s built–in function eigs used symmetric parameter true and Lanczos
basis max size as m, and all default settings except the number k of desired eigenpairs,
convergence tolerance, and common starting vector.

The MATLAB interfaced code primme eigs uses the state–of–the–art high perfor-
mance C99 library PRIMME for computing the eigenvalues and eigenvectors. This is
an impressive, carefully designed code that includes numerous parameter settings,
multiple routines/techniques, and options to include preconditioning. There are
15 choices for methods. For comparisons, we used the setting for method to be

20 J. BAGLAMA, T. BELLA, J. PICUCCI

“default min matvecs” (referred to as min mv in Table 7.1) which is the best method
for heavy matrix-vector products and performed better than the default “dynamic”
for Examples 7.1 to 7.4. On some m choices for Example 7.5, “dynamic” performed
better, therefore we reported the better results for Example 7.5 (“dynamic” is re-
ferred to as dyn in Table 7.1). We also included the method “jdqmr etol” (referred
to as jd tol in Table 7.1). primme eigs allows the user to input preconditioners to
accelerate convergence. We did not apply any preconditioners for the reported ex-
amples. We set the parameters “isreal” and “isdouble” to be true and used k for
desired eigenpairs and the common tolerance for convergence. Unless specified in the
example, we used the default values for all other adjustable parameters. primme eigs

allows the user to include any number of initial guesses to the eigenvectors, however
we only set a starting vector to the routine to be the common starting vector used
for all routines in that example. primme eigs allows the user to select the maximum
size of the search subspace. We set the maximum size of the search subspace to be
the common restrict value m for the other routines. It should be noted, the storage
requirement and maximum size of the search space for primme eigs are not always
equivalent, see [22, Section 3.4.1].

All examples use the location of eigenvalues to be largest in magnitude. Example
7.1 also includes an example for smallest algebraic. In all examples, the matrix A was
only accessed by call to a function with input x and output Ax. In the Table 7.1,
the cpu times are in seconds recorded using MATLAB’s tic-toc command. The row
for error represents max ‖Axi − λixi‖ which was computed outside the routines with
the outputted approximations. The references to (6.9) and (6.10) refer to the differ-
ent matrices used to find the coefficients for trreigs. Similar to Example 6.1, using
(6.5) reported inferior results and is not recorded. We finally remark that the perfor-
mance of the methods in our comparisons also depends on the machine architecture,
MATLAB coding style, and numerical implementation, (e.g. selective, partial or full
reorthgonalization). The MATLAB code trreigs is only an illustration of Algorithm
6.1 and was not designed in the same fashion as the publicly/commercially developed
codes. Nevertheless, the examples do show that Algorithm 6.1 can match or outper-
form the performance of the other methods. All numerical examples were performed
on matrices from SuiteSparse Matrix Collection [4] and all computations were carried
out using MATLAB version R2019b on an iMac with 3.7Ghz Intel Core i5 processor
and 32GB (2667 MHz) of memory using operating system macOS Mojave. Machine
epsilon is ε = 2.2 · 10−16.

Example 7.1. We considered two matrices, 2,680 × 2,680 dwt2680 and 2,233 ×
2,233 lshp2233 that were used as numerical examples in [8]. For dwt2680 the au-
thor was seeking 5 dominant eigenvalues and for lshp2233 the 5 smallest algebraic
eigenvalues. Both examples used a stopping criteria of 10−6. The examples in [8]
compared several related methods, the implicitly restarted Arnoldi (IRA), the implic-
itly restarted refined Arnoldi (IRRA), and the implicitly restarted refined harmonic
Arnoldi (IRRHA). As a point of reference the best computed result for dwt2680 for
the smallest used space m = 20, was for the IRRA with 244 mvp, [8, Table 7] and
the best computed result for lshp2233 for the smallest used space m = 20, was for
the IRRHA with 1333 mvp, [8, Table 6]. Table 7.1a displays the results for dwt2680
and Table 7.1b displays the results for lshp2233. For both matrices and all methods
we used k = 5 and ε = 10−6. For dwt2680 we display results for m = 10, 20 and for
lshp2233 for m = 20. The code trreigs displays the best results with respect to mvp
for lshp2233 and when m = 10 for dwt2680 with comparable results when m = 20.

Example 7.2. We considered the 12,992 × 12,992 matrix tuma2. This was the

HYBRID ITERATIVE REFINED METHOD 21

only symmetric matrix that was use as a numerical example in [11] for finding the 6
dominant eigenvalues with a stopping criteria of 10−10. The example in [11] compared
several related methods, thick–restarted block Arnoldi, modified thick–restarted block
Arnoldi, a hybrid modified Ritz thick–restarted and refined block Arnoldi method,
and the block Krylov-Schur algorithm [29]. As a point of reference the best computed
result with respect to mvp for the smallest used space m = 18, was for the modified
thick–restarted block Arnoldi with 1520 mvp, [11, Table 6]. Table 7.1c displays the
results for k = 5, m = 10, 18 and ε = 10−10. The code trreigs displays competitive
results.

Example 7.3 We considered the 256,000 × 256,000 matrix Lin that was used
in Example 6.1 in subsection 6.1. We are searching for largest eigenvalue(s) and
associated vector(s). We compared the codes with k = 1, 4, m = 15, and ε = 10−8.
Table 7.1d displays the results. Notice that the results are significantly better than
the recorded results in Fig. 6.1. This is due in part to using the strategy (7.2) for the
thick–restarted scheme and incorporating stopping criteria (7.1). The code trreigs

displays the best results with respect to mvp when compared to eigs and irbleigs

for both k = 1 and k = 4.
Example 7.4 We considered the 1,062,400× 1,062,400 matrix nlpkkt80. We are

searching for largest eigenvalue and associated eigenvector while using the smallest
search space. We set ε = 10−6. eigs did not record convergence within 6000 matrix-
products until m = 10. For m equal to 3 for primme eigs we set the parameters
maxPrevRetain = 1 and minRestartSize = 1, otherwise they were set as the default
values. The reported largest eigenvalue was 259.799. We include results for trreigs

not requiring (6.14) restriction. This column is labeled ’FLT’ under trreigs. Table
7.1e displays the results. The code trreigs with ’FLT’ displays the best results with
respect to mvp and smallest space m = 2.

Example 7.5 We considered the 214,005,017×214,005,017 matrix kmer V1r. We
are searching for largest eigenvalue and associated eigenvector while using the smallest
possible search space. We set ε = 10−6 and used the smallest possible value for m
for each routine to get convergence within 200 matrix–vector products. The Matlab
code, irbleigs did not converge for m = 3, 4, 5 and jdqmr etol did not converge for
m = 3, 4 and therefore are not reported. For m equal to 3 for primme eigs we set the
parameters maxPrevRetain = 1 and minRestartSize = 1, otherwise they were set
as the default values. We include results for trreigs not requiring (6.14) restriction.
This column is labeled ’FLT’ under trreigs. The reported largest eigenvalue was
6.50346. Table 7.1f displays the results. For the smallest space m = 2 the code
trreigs with ’FLT’ displays competitive results.

8. Conclusions. This paper presents a restarted hybrid method that combines
thick–restarting with restarting with a linear combination of iterative refined Ritz
vectors. The method does not require factorization of A, and can therefore be applied
to very large problems. Numerical examples show the method to be competitive with
other available codes with respect to matrix–vector products and storage required.

Appendix A. Lemma.

Lemma A.1. Given ‖y‖ = 1 and ‖x‖ = 1 then ‖x − (xT y)y‖ ≤ 1. Additionally,
if xT y 6= 0 then ‖x− (xT y)y‖ < 1.

Proof. Follows from ‖x−(xT y)y‖2 = 1−(xT y)2 and 0 ≤ (xT y)2 ≤ ‖x‖2‖y‖2 = 1.

22 J. BAGLAMA, T. BELLA, J. PICUCCI

0 100 200 300 400 500

10-2

100

102

(a)

0 100 200 300 400 500

10-2

100

102

(b)

0 100 200 300 400 500

10-2

100

102

(c)

0 100 200 300 400 500

10-2

100

102

(d)

0 50 100 150 200 250
10-6

10-4

10-2

100

102

(e)

Fig. 5.1. Example 5.3 and 6.2. Matrix A = diag(1 : 500) is a 500 × 500 diagonal matrix.
We are searching for the largest eigenpair and set m = 2. Figures (a), (b), and (c) use MLan(0)
Algorithm 2.1 where the (re)starting vector p1 on the next restart to be Ritz vector P2y1, refined
Ritz P2v1, and iterative refined Ritz P2v̂1, respectively. Figure (d) displays Algorithm 6.1 but with
refined Ritz vectors in place of iterative refined Ritz vectors and figure (e) uses Algorithm 6.1 as
presented. The example is done 100 times for each figure with a different beginning random vector.
Each line represent a start with a random vector and then a restart using the stated vector. The
process was terminated at 500 matrix-vector products or when ‖Ax1 − θ1x1‖ ≤ 10−8‖A‖. Only
Algorithm 6.1 as presented converged, figure (e).

HYBRID ITERATIVE REFINED METHOD 23

Table 7.1
Numerical Examples section 7.

trreigs irbleigs eigs primme eigs

m 10 20 10 20 10 20 10
(6.9) (6.10) (6.9) (6.10) (1,10) (1,20) min mv jd tol

mvp 98 106 94 129 140 188 104 86 102 173
cpu 0.10s 0.06s 0.04s 0.05s 0.16s 0.06s 0.05s 0.02s 0.04s 0.02s

err 7.9·10-6 7.6·10-6 6.1·10-6 9.4·10-7 8.0·10-6 7.7·10-6 6.9·10-6 2.3·10-6 1.1·10-5 1.1·10-5

(a) Example 7.1. 2,680× 2,680 matrix dwt2680 (k = 5). Largest in magnitude.

trreigs irbleigs eigs primme eigs

(6.9) (6.10) (4,5) min mv jd tol
mvp 497 435 920 510 456 687
cpu 0.34s 0.27s 0.23s 0.08s 0.08s 0.05s

err 2.8·10-6 2.5·10-6 3.2·10-6 8.8·10-7 6.8·10-6 4.1·10-6

(b) Example 7.1. 2,233× 2,233 matrix lshp2233 (k = 5, m = 20). Smallest algebraic.

trreigs irbleigs eigs primme eigs

m 10 18 10 18 10 18 10
(6.9) (6.10) (6.9) (6.10) (2,5) (3,6) min mv jd tol

mvp 647 498 264 264 488 561 713 240 408 586
cpu 0.56s 0.44s 0.26s 0.25s 0.34s 0.25s 0.29s 0.09s 0.21s 0.12

err 2.6·10-10 2.2·10-10 4.3·10-10 4.3·10-10 1.9·10-7 1.2·10-8 4.4·10-10 4.8·10-10 4.5·10-10 3.9·10-10

(c) Example 7.2. 12,992× 12,992 matrix tuma2 (k = 6). Largest in magnitude.

trreigs irbleigs eigs primme eigs

k 1 4 1 4 1 4 1 4

(6.9) (6.10) (3,5) (3,5) min mv jd tol min mv jd tol

mvp 491 970 1129 1170 1953 839 1095 380 449 649 874

cpu 6.89s 13.85s 18.56s 8.73s 16.73s 4.05s 4.64s 3.62s 1.69s 6.70s 3.22s

err 7.6·10-6 9.5·10-6 7.8·10-6 7.9·10-6 1.0·10-5 8.3·10-6 5.0·10-6 9.7·10-6 1.1·10-5 1.1·10-5 1.1·10-5

(d) Example 7.3. 256,000× 256,000 matrix Lin (m = 15). Largest in magnitude.

trreigs irbleigs eigs primme eigs

m 2 2 3 10 3 4
FLT (1,3) min mv jd tol min mv jd tol

mvp 1098 692 1422 5800 2014 1507 742 1010
cpu 48.73s 30.62s 58.08s 227.66s 81.45s 49.22s 31.94s 32.97s

err 2.4·10-4 2.6·10-4 1.8·10-4 2.6·10-4 2.5·10-4 2.2·10-4 2.6·10-4 2.3·10-4

(e) Example 7.4. 1,062,400× 1,062,400 matrix nlpkkt80 (k = 1). Largest in magnitude.

trreigs eigs primme eigs

m 2 2 3 4 5 3 4 5
FLT min mv dyn dyn jd tol

mvp 98 70 131 132 98 60 58 69 80
cpu 987.81s 650.78s 599.94s 654.22s 490.73s 370.15s 493.21s 2998.2s 2225.7s

err 6.4·10-6 5.4·10-6 6.3·10-6 5.5·10-6 5.5·10-6 5.2·10-6 4.6·10-6 4.8·10-6 3.1·10-6

(f) Example 7.5. 214,005,017× 214,005,017 matrix kmer V1r (k = 1). Largest in magnitude.

REFERENCES

[1] J. Baglama, D. Calvetti, and L. Reichel, IRBL: An implicitly restarted block-Lanczos
method for large-scale Hermitian eigenproblems, SIAM Journal on Scientific Computing,
24 (2003), pp. 1650–1677.

[2] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. Van Der Vorst, Templates for the
solution of algebraic eigenvalue problems: a practical guide, SIAM, 2000.

24 J. BAGLAMA, T. BELLA, J. PICUCCI

[3] Y. Cai, L.-H. Zhang, Z. Bai, and R.-C. Li, On an eigenvector-dependent nonlinear eigenvalue
problem, SIAM Journal on Matrix Analysis and Applications, 39 (2018), pp. 1360–1382.

[4] T. A. Davis and Y. Hu, The University of Florida sparse matrix collection, ACM Transactions
on Mathematical Software, 38 (2011), pp. 1–25.

[5] S. Feng and Z. Jia, A refined Jacobi-Davidson method and its correction equation, Computers
& Mathematics with Applications, 49 (2005), pp. 417–427.

[6] Z. Jia, Refined iterative algorithms based on Arnoldi’s process for large unsymmetric eigen-
problems, Linear Algebra and its Applications, 259 (1997), pp. 1–23.

[7] Z. Jia, Polynomial characterizations of the approximate eigenvectors by the refined Arnoldi
method and an implicitly restarted refined Arnoldi algorithm, Linear Algebra and its Ap-
plications, 287 (1999), pp. 191–214.

[8] Z. Jia, The refined harmonic Arnoldi method and an implicitly restarted refined algorithm
for computing interior eigenpairs of large matrices, Applied Numerical Mathematics, 42
(2002), pp. 489–512.

[9] Z. Jia, Some theoretical comparisons of refined Ritz vectors and Ritz vectors, Science in China
Series A: Mathematics, 47 (2004), pp. 222–233.

[10] Z. Jia and G. W. Stewart, An analysis of the Rayleigh–Ritz method for approximating
eigenspaces, Mathematics of Computation, 70 (2001), pp. 637–647.

[11] W. Jiang and G. Wu, A thick-restarted block Arnoldi algorithm with modified Ritz vectors for
large eigenproblems, Computers & Mathematics with Applications, 60 (2010), pp. 873–889.

[12] R. B. Lehoucq and D. C. Sorensen, Deflation techniques for an implicitly restarted Arnoldi
iteration, SIAM Journal on Matrix Analysis and Applications, 17 (1996), pp. 789–821.

[13] R. Li, Y. Xi, E. Vecharynski, C. Yang, and Y. Saad, A Thick-Restart Lanczos algorithm
with polynomial filtering for Hermitian eigenvalue problems, SIAM Journal on Scientific
Computing, 38 (2016), pp. A2512–A2534.

[14] R. B. Morgan, On restarting the Arnoldi method for large nonsymmetric eigenvalue problems,
Mathematics of Computation, 65 (1996), pp. 1213–1230.

[15] R. B. Morgan, Implicitly restarted GMRES and Arnoldi methods for nonsymmetric systems of
equations, SIAM Journal on Matrix Analysis and Applications, 21 (2000), pp. 1112–1135.

[16] B. N. Parlett, The Symmetric Eigenvalue Problem, vol. 20, SIAM, 1998.
[17] M. Ravibabu and A. Singh, On refined Ritz vectors and polynomial characterization, Com-

puters & Mathematics with Applications, 67 (2014), pp. 1057–1064.
[18] Y. Saad, Variations on Arnoldi’s method for computing eigenelements of large unsymmetric

matrices, Linear Algebra and its Applications, 34 (1980), pp. 269–295.
[19] H. D. Simon, Analysis of the symmetric Lanczos algorithm with reorthogonalization methods,

Linear Algebra and its Applications, 61 (1984), pp. 101–131.
[20] G. L. Sleijpen and H. A. Van der Vorst, A Jacobi–Davidson iteration method for linear

eigenvalue problems, SIAM Review, 42 (2000), pp. 267–293.
[21] D. C. Sorensen, Implicit application of polynomial filters in a k-step Arnoldi method, SIAM

Journal on Matrix Analysis and Applications, 13 (1992), pp. 357–385.
[22] A. Stathopoulos and J. R. McCombs, PRIMME: preconditioned iterative multimethod eigen-

solver methods and software description, ACM Transactions on Mathematical Software, 37
(2010), p. 21.

[23] A. Stathopoulos and Y. Saad, Restarting techniques for the (Jacobi–) Davidson symmetric
eigenvalue methods, Electronic Transactions on Numerical Analysis, 7 (1998), pp. 163–181.

[24] A. Stathopoulos, Y. Saad, and K. Wu, Dynamic thick restarting of the Davidson, and the
implicitly restarted Arnoldi methods, SIAM Journal on Scientific Computing, 19 (1998),
pp. 227–245.

[25] G. W. Stewart, A Krylov–Schur algorithm for large eigenproblems, SIAM Journal on Matrix
Analysis and Applications, 23 (2002), pp. 601–614.

[26] K. Wu and H. Simon, Dynamic restarting schemes for eigenvalue problems, tech. report,
Lawrence Berkeley National Lab., CA (US), 1999.

[27] K. Wu and H. Simon, Thick-restart Lanczos method for large symmetric eigenvalue problems,
SIAM Journal on Matrix Analysis and Applications, 22 (2000), pp. 602–616.

[28] L. Wu, F. Xue, and A. Stathopoulos, TRPL+K: Thick-restart preconditioned Lanczos+ K
method for large symmetric eigenvalue problems, SIAM Journal on Scientific Computing,
41 (2019), pp. A1013–A1040.

[29] Y. Zhou and Y. Saad, Block Krylov–Schur method for large symmetric eigenvalue problems,
Numerical Algorithms, 47 (2008), pp. 341–359.

	Introduction
	Lanczos Method
	Thick–Restarted Lanczos with Ritz vectors
	Refined Ritz vectors
	Iterative Refined Ritz vectors
	Hybrid Methods
	Hybrid Thick–Restarted and Iterative Refined Ritz Algorithm

	Numerical Examples
	Conclusions
	Appendix A. Lemma
	References

