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A simple model of phytoplankton–zooplankton interaction with a periodic input nutrient is presented. The
model is then used to study a nutrient–plankton interaction with a toxic substance that inhibits the growth
rate of plankton populations. The effects of the toxin upon the existence, magnitude, and stability of the
periodic solutions are discussed. Numerical simulations are also provided to illustrate analytical results
and to compare more complicated dynamical behaviour.
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1. Introduction

Surface water bodies in the ocean, lakes, and rivers are inhabited by microscopically small
autotrophic organisms, the phytoplankton. Through the activity of the photosystem II, phyto-
plankton organisms are responsible for much of the oxygen present in the Earth’s atmosphere.
They convert inorganic materials into new organic compounds by the process of photosynthesis
[22]. Hence, these tiny planktonic algae play a significant role in global primary productivity
and thus are important within the biogeochemical cycling of carton or to support fish stocks. In
terms of numbers, the most important groups of phytoplankton are the diatoms, cyanobacteria,
and dinoflagellates, although many other groups of algae are sometimes abundant.

Pollution of freshwater and marine systems by anthropogenic sources has become a concern
over the last several decades. Organic (e.g. triazine herbicides) [3,28–30,39,4] and inorganic
compounds (e.g. heavy metals) [9,2,29–31,36,37] both may have harmful effects to the organisms.
For example, samples taken from the inner harbour of the Waukegan area, located in Lake County,
IL, USA, on the west shore of Lake Michigan, have shown that photosynthesis of the green
algae Selenastrum capricornutum is inhibited due to pollutants originating from industrial and
recreational sources (http://www.epa.gov/glnpo/aoc/waukegan.html).

This study investigates the possible effects of toxic substances upon nutrient–phytoplankton–
zooplankton interaction in a seasonal environment. The model consists of a single limiting nutrient,
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Journal of Biological Dynamics 15

two plankton populations, and an inhibitor, where the inhibitor may include agents such as
pesticides or heavy metals. The phytoplankton takes up the nutrients and zooplankton grazes
on phytoplankton. In the first model, the zooplankton absorbs the inhibitor without effect, while
phytoplankton’s uptake rate and consequently its growth rate are inhibited due to the presence
of an external inhibitor. In the second model, phytoplankton can uptake toxin without any effect
but zooplankton’s grazing rate is diminished due to the external toxin. Although our models are
simplified systems, it is the first step in understanding complex interaction between the first two
trophic levels and pollution. The effects of multiple nutrients on planktonic systems are described
e.g. [3]. To the best of our knowledge, this research along with a study in [19] are the first
investigations of using mathematical models to explore toxic effects upon plankton interaction.

We first propose a simple plankton model with a periodic input of nutrients and summarize
its dynamical consequences (Section 2). In the following two sections, we examine the effect
of a toxin upon the existence, magnitude, and stability of the periodic solutions by comparing
the resulting models with the base model without the toxin. Section 3 studies the model when
phytoplankton is inhibited by the toxin and Section 4 presents a model that is identical to the one
presented in Section 3, but the toxin has a negative effect on the zooplankton only. Criteria for
the coexistence of both plankton populations are also discussed. However, comparisons between
more complex dynamical behaviour will only be numerically simulated. The final section provides
a brief summary and discussion.

2. The nutrient–phytoplankton–zooplankton model

In this section, we introduce the basic model that will be used in subsequent sections to study the
effects of toxin upon the plankton interactions. For simplicity, it is assumed that the organisms and
the nutrient are uniformly distributed over the space. Let N(t), P(t), and Z(t) denote the nutrient
concentration, the phytoplankton population, and zooplankton population at time t , respectively.
For convenience, the two plankton levels are modelled in terms of nutrient content and therefore
their units are nitrogen or nitrate per unit volume. We let δ and ε denote the per capita natural
death rate of phytoplankton and zooplankton, respectively. The phytoplankton’s nutrient uptake
rate is denoted by f , while g is the zooplankton’s grazing rate. Since plankton populations are
measured in terms of nutrient concentration, f and g are functions of nutrient concentration. Both
functions have the standard monotonic assumptions as the classical Ivlev and Holling types II and
III functional responses given below:

(H1) f, g ∈ C1(0, ∞), f (0) = g(0) = 0, f ′(x), g′(x) > 0 for x ≥ 0 and lim
x→∞ f (x) =

lim
x→∞ g(x) = 1.

Parameter m is the maximal nutrient uptake rate of phytoplankton and c denotes the maximal
zooplankton ingestion rate, while β and α are the fractions of zooplankton grazing conversion
and phytoplankton nutrient conversion, respectively. In natural nutrient–plankton systems, waters
flowing into the system bring input of fluxes of nutrients and outflows also carry out nutrients
[4,10,32,33]. The rate of waters flowing in and out of the system is a constant and denoted by
D. However, unlike the study in [19], we assume that the input nutrient concentration N0(t) is
varied periodically around N0 with N0(t) = N0 + ar(t), where N0 > 0, 0 < a < N0, and r(t)

is τ -periodic with mean value zero and |r(t)| ≤ 1 for t ≥ 0. The consideration of periodic input
of nutrients is motivated by the tidal, day/night, or seasonal cycles occurring in nature. Periodical
influxes of nutrients are common features in freshwater and marine ecosystem. The periodicity
may occur on a daily (e.g. triggered by the release of vertical migrating planktonic organisms), tidal
or on seasonal basis (e.g. by seasonal upwelling, or enhanced input by rivers in late winter/early
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16 S.R.-J. Jang et al.

spring to temperate shelf seas). Both plankton populations are also assumed to be flowing out of
the system with the same constant washout rate D.

Nutrients are consumed by the phytoplankton, which in turn is grazed upon by the herbivorous
zooplankton. Consequently, there are minus terms −mf (N)P and −cg(P )Z in the equations for
Ṅ and Ṗ , respectively. For simplicity, we assume that the system under study is closed and hence
there are positive feedback terms δP , εZ, (1 − α)mf (N)P , and (1 − β)cg(P )Z appeared in the
equation for Ṅ . The model with the above biological assumptions can be written as the following
three dimensional nonautonomous ordinary differential equations:

Ṅ = D(N0(t) − N) − mf (N)P + δP + εZ + (1 − β)cg(P )Z + (1 − α)mf (N)P,

Ṗ = [αmf (N) − δ − D]P − cg(P )Z,

Ż = [βcg(P ) − ε − D]Z, N(0), P (0), Z(0) ≥ 0,

(1)

where 0 < α, β ≤ 1 and D, N0, m, c, ε, δ > 0.
System (1) is very similar to a model studied by Ruan [33] where it was assumed that zoo-

plankton also uptakes nutrients. In this study, the zooplankton population only grazes upon
phytoplankton for survival, i.e., zooplankton is obligate, and our analysis is based on the meth-
ods used in the study of periodic chemostat systems [35, Chapter 7]. Notice the scalar periodic
equation

Ṅ = D(N0(t) − N), N(0) ≥ 0, (2)

has a unique ositive τ -periodic solution

N∗(t) = De−Dt

eDτ − 1

∫ t+τ

t

eDs[N0 + ar(s)]ds

and solutions of Equation (2) are asymptotic to the periodic solution N∗(t) as t → ∞. Since
Ṅ |N=0 ≥ DN0(t) ≥ 0, Ṗ |P=0 = Ż|Z=0 = 0, solutions of Equation (1) remain nonnegative.

Let U = N∗(t) − N − P − Z. Then U̇ = −DU and thus solutions of Equation (1) are
bounded. Moreover, system (1) can be rewritten as

U̇ = −DU,

Ṗ = [αmf (N∗(t) − U − P − Z) − δ − D]P − cg(P )Z,

Ż = [βcg(P ) − ε − D]Z.

(3)

Since the ω-limit set of Equation (3) lies on the set U = 0, Equation (1) has the following limiting
system:

Ṗ = [αmf (N∗(t) − P − Z) − δ − D]P − cg(P )Z,

Ż = [βcg(P ) − ε − D]Z, P (0), Z(0) ≥ 0, P (0) + Z(0) ≤ N∗(0).
(4)

As N(t) + P(t) + Z(t) = N∗(t) for t ≥ 0 on the ω-limit set and solutions of Equation (1) remain
nonnegative, we see that P(t) + Z(t) ≤ N∗(t) for t ≥ 0, i.e., system (4) is well-defined.

Let

� = {(P, Z) ∈ R2
+ : P + Z ≤ N∗(0)}.

The Poincaré maps can be exploited to study periodic system (4). We refer the reader to Chapter 7
of Smith and Waltman [35] for more in-depth information on periodic chemostat systems. Clearly,
system (4) always has a steady state solution (0, 0) in which both plankton populations are extinct.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 O

f 
R

ho
de

 I
sl

an
d]

 a
t 1

1:
39

 0
1 

O
ct

ob
er

 2
01

2 



Journal of Biological Dynamics 17

The Jacobian derivative of the Poincaré map induced by system (4) evaluated at (0, 0) is given by
	0(t), where 	0(t) is the fundamental matrix solution of Ẋ = J0X with

J0 =
(

αmf (N∗(t)) − δ − D 0
0 −ε − D

)
. (5)

Let

σ0 = 1

τ

∫ τ

0
[αmf (N∗(t)) − δ − D]dt. (6)

Since N∗(t) is the maximal nutrient concentration available at any time t when both plank-
ton populations are not present, σ0 is the average maximal growth rate of the phytoplankton
1/τ

∫ τ

0 αmf (N∗(t))dt minus the total removal rate δ + D due to death and washout. Hence σ0

can be viewed as the average net growth rate of the phytoplankton.

PROPOSITION 2.1 If σ0 < 0, then solutions of Equation (4) satisfy limt→∞ P(t) = limt→∞
Z(t) = 0.

Proof We may assume P(0) > 0. Since Ṗ ≤ [αmf (N∗(t)) − δ − D]P for t ≥ 0, consider the
following equation

ẋ = [αmf (N∗(t)) − δ − D]x
with x(0) = P(0). The solution can be written explicitly as

x(t) = x(0)e
∫ t

0 [αmf (N∗(r))−δ−D]dr

= x(0)e
∫ t0

0 [αmf (N∗(r))−δ−D]dr e
∫ nτ+t0
t0

[αmf (N∗(r))−δ−D]dr

= x(0)e
∫ t0

0 [αmf (N∗(r))−δ−D]dr e
∫ nτ

0 [αmf (N∗(r))−δ−D]dr

for some 0 ≤ t0 < τ and n > 0, where t0 and n depend on t . Notice t → ∞ if and only if n → ∞.
Hence limt→∞ x(t) = 0 as σ0 < 0.As a result, limt→∞ P(t) = 0, and thus limt→∞ Z(t) = 0. �

Suppose now σ0 > 0. Consider the linear periodic system

Ẋ = J0X (7)

where J0 is given in Equation (5). Let 	(t) be the fundamental matrix solution of the linear system
(7) with 	(0) = I , the identity matrix. Then the Floquet multipliers of (0, 0) are the eigenvalues
of 	(τ) [8]. Since

	(τ) =
(

e
∫ τ

0 [αmf (N∗(t))−δ−D]dt 0
0 e−(ε+D)τ

)
(8)

and σ0 > 0, we see that (0, 0) is unstable.

PROPOSITION 2.2 Suppose σ0 > 0. Then Equation (4) has a unique τ -periodic solution of the
form (P̄ (t), 0) where P̄ (t) > 0. Moreover, solutions of Equation (4) with P(0) > 0 and Z(0) = 0
converge to (P̄ (t), 0) as t → ∞.

Proof Since Z(t) = 0 for t ≥ 0, we consider the following equation

Ṗ = [αmf (N∗(t) − P) − δ − D]P, 0 ≤ P(0) ≤ N∗(0). (9)

Let T0 : [0, N∗(0)] → [0, N∗(0)] denote the Poincaré map induced by Equation (9), i.e., T0(P0) =
P(τ, P0), where P(t, P0) is the solution of Equation (9) with P(0) = P0.
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18 S.R.-J. Jang et al.

Notice T0(0) = 0, T0(N
∗(0)) < N∗(0), and Ṫ0 = ∂P (τ, P0)/∂P0 = v(τ), where v(t) satisfies

v̇ = [αmf (N∗(t) − P) − δ − D − αmf ′(N∗(t) − P)P ]v
v(0) = 1.

Therefore, Ṫ0 > 0, and in particular when P0 = 0, we have

v(τ) = e
∫ τ

0 [αmf (N∗(t))−δ−D]dt > 1.

Thus, Ṫ0(0) > 1, and the map T0 has a unique positive fixed point p̄, p̄ < N∗(0), which corre-
sponds to a unique positive τ -periodic solution P̄ (t) for Equation (9). Since the mapT0 is monotone
increasing, it can be easily shown that limn→∞ T n

0 (p) = p̄ for 0 < p ≤ N∗(0). Consequently,
solutions of (9) with P(0) > 0 satisfy limt→∞(P (t) − P̄ (t)) = 0. �

Assume σ0 > 0 and let

σ1 = 1

τ

∫ τ

0
[βcg(P̄ (t)) − ε − D]dt. (10)

Similar to σ0, σ1 can be viewed as the average maximal growth rate of zooplankton when
phytoplankton population is stabilized at P̄ (t) minus the total zooplankton removal rate ε + D.

PROPOSITION 2.3 Let σ0 > 0 and σ1 < 0. Then solutions of Equation (4) with P(0) > 0 satisfy
limt→∞(P (t) − P̄ (t)) = limt→∞ Z(t) = 0.

Proof We claim that limt→∞ Z(t) = 0. Since Ṗ ≤ [αmf (N∗(t) − P) − δ − D]P for all t ≥ 0,
consider the following equation:

ẋ = [αmf (N∗(t) − x) − δ − D]x, x(0) = P(0). (11)

Observe that P(t) ≤ x(t) for t ≥ 0. Since x(t) → P̄ (t) as t → ∞ by Proposition 2.2,
lim inf t→∞(x(t) − P̄ (t)) = 0. Hence for any η > 0 given, there exists t0 > 0 such that x(t) ≤
P̄ (t) + η for t ≥ t0. As a result, P(t) ≤ P̄ (t) + η for t ≥ t0. By our assumption σ1 < 0, we can
choose η > 0 such that ∫ τ

0
[βcg(P̄ (t) + η) − ε − D]dt < 0.

Consequently, Ż ≤ [βcg(P̄ (t) + η) − ε − D]Z for t ≥ t0 implies limt→∞ Z(t) = 0.
It remains to show that limt→∞(P̄ (t) − P(t)) = 0. Consider the Poincaré map T induced

by system (4), T (P0, Z0) = (P (τ), Z(τ)), where (P (t), Z(t)) is the solution of Equation (4)
with initial condition (P0, Z0). Since limt→∞ Z(t) = 0, limn→∞ T n(P0, Z0) lies on the P -axis.
Moreover, T n(P0, 0) = (T n

0 P0, 0), where T0 is the Poincaré map associated with Equation (9).
Since T0 has a unique positive fixed point p̄ which is moreover globally asymptotically stable
for T0 in (0, N∗(0)], it follows that T n(P0, 0) converges to the fixed point (p̄, 0). Therefore the
periodic solution (P̄ (t), 0) is globally asymptotically stable. �
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Journal of Biological Dynamics 19

Suppose now σ0 > 0 and σ1 > 0. Then the floquet multipliers of the periodic solution (P̄ (t), 0)

are the eigenvalues of 	1(τ ), where 	1(t) is the fundamental matrix solution of Ẋ = J1X with

J1 =
(

J11 −αmf ′(N∗(t) − P̄ (t))P̄ (t) − cg(P̄ (t))

0 βcg(P̄ (t)) − ε − D

)
, (12)

where

J11 = αmf (N∗(t) − P̄ (t)) − δ − D − αmf ′(N∗(t) − P̄ (t))P̄ (t).

It follows that the periodic solution (P̄ (t), 0) is unstable as σ1 > 0. Similar to the arguments
used in [18,42], we can prove that both populations can coexist by using the concepts of uniform
persistence.

THEOREM 2.4 The asymptotic dynamics of system (1) are summarized below.

(a) If σ0 < 0, then solutions of Equation (1) are asymptotic to (N∗(t), 0, 0).
(b) If σ0 > 0 and σ1 < 0, then solutions (N(t), P (t), Z(t)) of Equation (1) with P(0) > 0 are

asymptotic to (N∗(t) − P̄ (t), P̄ (t), 0) as t → ∞
(c) If σ0, σ1 > 0, then system (1) is uniformly persistent and has a positive τ -periodic solution.

Proof We rewrite system (4) as Ẏ = F(Y, t) and system (3) as Ẋ = F(X, t) + R(X, t). Notice
there exists C = D max0≤t≤τN

∗(t) such that |R(X, t)| ≤ Ce−Dt for t ≥ 0 for all solution X(t)

of system (3). As a result, Lemma A.4 of Hale and Somolinos [14] implies that the asymptotic
behaviour of Equations (3) and (4) are the same. Since systems (1) and (3) are equivalent, we can
conclude that systems (1) and (4) have the same asymptotic dynamics. Therefore, the proof of (a)
and (b) follows from Propositions 2.1 and 2.3, respectively.

To prove (c), we first apply Theorem 3.1 of Butler and Waltman [5] to show uniform persistence
of the limiting system (4). Let F be the flow generated by system (4) and ∂F be F restricted
to the boundary of �. We need to verify that ∂F is isolated and acyclic. Let M0 = {(0, 0)} and
M1 = {(P̄ (t), 0) : 0 ≤ t ≤ τ }. Then the invariant set of ∂F is {M0, M1}. It is clear that ∂F is
acyclic as M0 and M1 are globally attracting on the positive Z-axis and P -axis, respectively, and
thus no subset of {M0, M1} can form a cycle.

It remains to prove that each Mi is isolated for ∂F and for F , respectively, for i = 0, 1. We
only verify that M0 is isolated for F as the remaining assertion can be argued similarly. Let
c0 = max0≤P≤N∗(0)g

′(P ). By our assumption, we can choose ρ > 0 such that

1

τ

∫ τ

0
[αmf (N∗(t) − ρ) − δ − D − cc0ρ]dt > 0. (13)

Let N = {(P, Z) ∈ � : d((P, Z), M0) < ρ}, where d is the Euclidean metric on R
2. We show

that N is an isolated neighbourhood of M0 in �.
If this is not true, then there exists an invariant set V in � such that M0 ⊂ V ⊂ N and V \M0 
=

∅. Notice, we can find P(0), Z(0) > 0 such that (P (0), Z(0)) ∈ V \M0. On the other hand,
V ⊂ N implies

Ṗ

P
= αmf (N∗(t) − P − Z) − δ − D − cg(P )

P
Z

≥ αmf (N∗(t) − ρ) − δ − D − cc0ρ.

Hence,

P(t) ≥ P(0)e
∫ t

0 [αmf (N∗(s)−ρ)−δ−D−c0cρ]ds

and we have limt→∞ P(t) = ∞ by inequality (13). This is impossible as solutions of Equation(4)

are bounded. Therefore, M0 must be isolated in ∂F . Furthermore, let
◦
� denote the interior of
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20 S.R.-J. Jang et al.

� and W+(Mi) be the stable manifold of Mi , i = 0, 1. It follows from the Floquet multipliers

of Mi that W+(Mi) is disjoint from
◦
� for i = 0, 1. Hence, Equation (4) is uniformly persis-

tent by Butler and Waltman [5]. The existence of a τ -periodic solution in the interior of �

follows from a result of Yang and Freedman [42] as the system is dissipative and uniformly
persistent. �

Simulations reveal that the positive periodic solution in Theorem 2.4 (c) is unique and
locally stable when σ1 > 0 is small and it becomes unstable as we increase σ1. Indeed, we let
N0(t) = 10 + 5 sin(πt/10), f (x) = x/2 + x ′, and g(x) = x/1 + x. Notice Michaelis-Menton
functions f and g have been frequently used in the literature to model plankton uptake rates. We
first choose the following parameter values: D = 0.2, δ = 9, ε = 0.01, c = 2, m = 13, α = 0.9,
β = 0.2, d = 2, and b = 10. Then σ0 = 0.4993 and σ1 = 0.0475. Figure 1(a) plots two solu-
tions with initial conditions (P (0), Z(0)) = (3, 1) for the solid line, and with (P (0), Z(0)) =
(3.1, 2.9) for the dashed line. Both solutions converge to the positive periodic solution. When
we change c to 8, σ1 = 0.8200 becomes larger. Figure 1(b) demonstrates that the positive
periodic solution becomes unstable. In this simulation, we use the same initial conditions as
for Figure 1(a).

We can summarize our results of Theorem 2.4 in biological terms as follows. If the average
maximal growth rate 1/τ

∫ τ

0 αmf (N∗(t))dt of phytoplankton is less than the total removal rate
δ + D, i.e., σ0 < 0, then phytoplankton population goes extinct and so does the zooplankton. If
the average maximal growth rate of phytoplankton exceeds its total removal rate, i.e., σ0 > 0, then
the phytoplankton population can stabilize in a positive periodic solution fashion in the absence of
zooplankton, namely P̄ (t). Consequently, zooplankton population becomes extinct if its average
maximal growth rate 1/τ

∫ τ

0 βcg(P̄ (t))dt when phytoplankton is stabilized is less than its total
removal rate ε + D, and both populations can coexist if these average maximal growth rates are
greater than the total removal rates.

Figure 1. This figure plots solutions of system (1). Two solutions are given in (a) when σ0 = 0.4993 and σ1 = 0.0475.
Two solutions are provided in (b) when σ0 = 0.4993 and σ1 = 0.8200.
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3. A nutrient–plankton–toxin model with inhibition of the phytoplankton

Motivated by the discussion of Section 1, in this section we will consider the situation when a toxic
substance has negative effects on the phytoplankton. Specifically, the uptake rate and consequently
the growth rate of phytoplankton is inhibited by the presence of the toxin, but zooplankton can
consume the substance without any effect. For example, in a marine planktonic community com-
prising mainly diatoms and herbivorous copepods in a low silicate, elevated copper environment
[34], copper will harm only diatoms and not crustaceans. At low concentrations, the herbicide
triazine also affects primary producers directly by inhibiting photosynthesis, while effects on
subsequent trophic levels only would be indirect [34]. Our goal is to study toxic effects on the
nutrient–plankton system by investigating simple solutions and asymptotic dynamics analytically
whenever it is possible.

It is assumed that the toxin is continuously pouring into the system with constant input concen-
tration S0 at the same constant rate D as the nutrient. As a first guess one would expect nutrient
and contaminant input to be regularly coupled (e.g. both compounds being equally diluted by
periodical rainfall, or as river water laden with both compounds discharging into a lake or an
coastal area [34]). This is the case for pulsed river diversions in Louisiana [36]. But, there are
also several scenarios where nutrient input is uncoupled from the influx or the concentration of
contaminants. These are the scenarios we are referring to in this paper. Some examples are related
to the fact that in aquatic as well as terrestrial environments consumers often regulate the input
and cycling of nutrients [37].

Diel vertical migration of the zooplankton is a well-known predator avoidance mechanism
taking place in lakes as well as in coastal or open oceans systems [39,41]. Zooplankton
is known to be able to release relevant amounts of nutrients, both nitrogen and phospho-
rus, to the surrounding water [2,12,23]. With the zooplankton largely higher abundant in the
euphotic layer at night this will imply a night-time nutrient pulse available for the phytoplank-
ton that is uncoupled from a potential contaminant background. Beside these active migrations
of zooplankton triggering the pulsed nutrient input passive accumulation of zooplankton by
periodically tidal currents are known [20,43] generating identical effects of pulsed nutrient
enrichments.

Some diatoms or cyanobacteria are able to actively regulate their buoyancy and hence can
vertically migrate [11,15,25]. In contrast to the zooplankton these organisms perform diel verti-
cal migrations to gather nutrients in the deeper water at night-time [1,38,40]. At daytime they
float up into the euphotic layer where they use the nutrients collected during night to per-
form photosynthesis in the less nutrient rich upper layer. Since every plankton cell is leaky
to a certain extent, and substances can be additionally released by sloppy grazing, some of
the nutrients gathered in the deep are released to the water in the upper layer. This again
represents a periodical input of nutrients to a system while potential toxin levels remain
unchanged.

Let S(t) denote the toxic concentration at time t . It is assumed that zooplankton can uptake
the substance without any effect while phytoplankton’s nutrient uptake rate is decreased by a
fraction, h(S), depending only on the toxin level S. Zooplankton’s toxin uptake rate is denoted
by u. Functions h and u are assumed to satisfy the following assumptions.

(H2) h ∈ C1[0, ∞), h(0) = 1, h′(x) < 0 and h(x) > 0 for all x ≥ 0.

(H3) u ∈ C1[0, ∞), u(0) = 0, u′(x) > 0 for x ≥ 0 and lim
x→∞ u(x) = 1.

Let b > 0 denote the maximum zooplankton toxin uptake rate. Similar to the previous model,
we assume that the ecosystem under study is closed. With the above biological assumptions, the
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22 S.R.-J. Jang et al.

plankton–toxin interaction is given below.

Ṅ = D(N0(t) − N) − mf (N)h(S)P + δP + εZ + (1 − β)cg(P )Z + (1 − α)mf (N)h(S)P,

Ṗ = [αmf (N)h(S) − δ − D]P − cg(P )Z,

Ż = [βcg(P ) − ε − D]Z, (14)

Ṡ = D(S0 − S) − bu(S)Z, N(0), P (0), Z(0), S(0) ≥ 0,

where 0 < α, β ≤ 1, and D, N0, S0, m, b, c, ε, δ > 0.
Notice f and g have the same assumption as in Section 2. Although the phytoplankton may

uptake the toxin so that its growth rate is inhibited, however, since the toxin concentration is
usually very small, we assume that the uptake function f does not depend on S explicitly. System
(14) can be regarded as an approximation of a more realistic model.

Since Ṡ(t) ≤ D(S0 − S(t)) for t ≥ 0, lim supt→∞ S(t) ≤ S0. Consequently, using the same
argument as we did for system (1), it can be easily seen that solutions of Equation (14) remain
nonnegative and are bounded. Therefore, it can be shown that solutions of Equation (14) satisfy

0 < lim inf
t→∞ S(t) ≤ lim sup

t→∞
S(t) ≤ S0. (15)

Indeed, if lim inf t→∞ S(t) = 0, then there exists a sequence {tn}, tn → ∞, such that
limn→∞ S(tn) = 0. Notice limn→∞ Ṡ(tn) = 0 as the right hand side of Equation (14) is bounded.
We thus obtain a contraction as limn→∞ Ṡ(tn) = DS0 > 0. Hence, inequality (15) is shown.
Furthermore, system (14) has the following limiting system:

Ṗ = [αmf (N∗(t) − P − Z)h(S) − δ − D]P − cg(P )Z,

Ż = [βcg(P ) − ε − D]Z,

Ṡ = D(S0 − S) − bu(S)Z, P (0), Z(0), S(0) ≥ 0, P (0) + Z(0) ≤ N∗(0),

(16)

where N∗(t) is the unique positive τ -periodic solution of Equation (2). Notice that system (16)
is well defined as P(t) + Z(t) ≤ N∗(t) for t ≥ 0 for all solutions of Equation (16) with P(0) +
Z(0) ≤ N∗(0). Clearly Equation (16) always has a steady state solution of the form (0, 0, S0),
where both plankton populations are extinct. Let

σ0 = 1

τ

∫ τ

0
[αmf (N∗(t)) − δ − D]dt,

as defined in Equation (6), and

ρ0 = 1

τ

∫ τ

0
[αmf (N∗(t))h(S0) − δ − D]dt. (17)

Then

ρ0 < σ0.

Observe that ρ0 is the average net growth rate of phytoplankton when toxin is present at its
maximum level S0, while σ0 can be viewed as the average net growth rate of phytoplankton when
there is no toxin. It is straightforward to show that (0, 0, S0) is locally stable if ρ0 < 0. Similar to
Section 2, we can show that solutions of system (16) asymptotically approach (0, 0, S0) if σ0 < 0,
a stronger condition than ρ0 < 0.
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PROPOSITION 3.1 If σ0 < 0, then solutions of Equation (16) satisfy limt→∞ P(t) =
limt→∞ Z(t) = 0 and limt→∞ S(t) = S0.

It is strongly suspected that complicated dynamical behaviour can occur for system (16) when
σ0 > 0 and ρ0 < 0. We next use numerical examples to demonstrate the complexity of the model.
We use the same functional forms N0(t), f and g as we did for Figure 1 and let h(s) = e−bs and
u(s) = s/6 + s. Notice this particular form of h has been used in [24] to model inhibiting mech-
anism. Parameter values adopted are D = 0.07, δ = 0.04, ε = 0.01, c = 0.3, m = 5, α = 0.9,
β = 0.4, b = 6, and S0 = 4. In this case, σ0 = 3.6369 and ρ0 = −0.1007. Therefore, according
to Proposition 3.1 that the trivial solution (0, 0, S0) is locally stable but may not be globally
attracting. Simulations exhibit the existence of a positive periodic solution, which is moreover
locally stable. Figure 2(a) plots the positive periodic solution. We then use random number gen-
erator to simulate the solutions. We first fix initial condition with S(0) = 1 and let P(0) and Z(0)

vary. Initial conditions that result in convergence to (0, 0, S0) are denoted by the symbol ∗, while
initial conditions that converging to the positive periodic solution are denoted by dots. We then
perform the same procedure for different initial conditions of S(0). Figure 2(b) plots these ini-
tial conditions with S(0) = 1, S(0) = 5, and S(0) = 10, respectively. Since N∗(0) = 8.9, these

Figure 2. (a) plots the positive periodic solution for system (3.3) when ρ0 < 0 < σ0. (b) plots initial conditions of P(0)

and Z(0) with S(0) = 1, S(0) = 5, and S(0) = 10, respectively. Initial conditions that converge to the positive periodic
solution and to the steady state solution (0, 0, S0) are denoted by ∗ and dots, respectively.
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24 S.R.-J. Jang et al.

initial conditions form a triangle region: P(0) + Z(0) ≤ 8.9. Similar plots are obtained when we
increase initial values for S(0). It is clear from these plots that solutions converge to (0, 0, S0)

when Z(0) is very small, while solutions converge to the positive periodic solution if Z(0) is
somewhat larger.

PROPOSITION 3.2 If ρ0 > 0, then Equation (16) has a unique τ -periodic solution of the form
(P̂ (t), 0, S0) where P̂ (t) > 0, and solutions of Equation (16) with P(0) > 0 and Z(0) = 0 satisfy
limt→∞(P (t) − P̂ (t)) = limt→∞ Z(t) = 0 and limt→∞ S(t) = S0.

Proof Since Z(t) = 0 for t > 0 if Z(0) = 0, it is enough to consider the following system:

Ṗ = [αmf (N∗(t) − P)h(S) − δ − D]P,

Ṡ = D(S0 − S), 0 ≤ P(0) ≤ N∗(0), S(0) ≥ 0. (18)

As Ṡ can be decoupled from P , we see that limt→∞ S(t) = S0. Hence for any η > 0, there exists
t0 > 0, such that S0 − η < S(t) < S0 + η for t ≥ t0. It is clear that 1/τ

∫ τ

0 [αmf (N∗(t))h(S0 − η) −
δ − D]dt > 0. We choose η > 0 such that

1

τ

∫ τ

0
[αmf (N∗(t))h(S0 + η) − δ − D]dt > 0.

Notice

αmf (N∗(t) − P)h(S0 + η) − δ − D]P ≤ Ṗ ≤ [αmf (N∗(t) − P)h(S0 − η) − δ − D]P
for all t ≥ t0.

Consider the corresponding systems:

ẋ = [αmf (N∗(t) − x)h(S0 − η) − δ − D]x, x(0) = P(t0) ≤ N∗(0) (19)

and

ẏ = [αmf (N∗(t) − y)h(S0 + η) − δ − D]y, y(0) = P(t0) ≤ N∗(0). (20)

Let T1 and T2 be the Poincaré maps induced by Equations (19) and (20), respectively, i.e., T1 :
[0, N∗(0)] → [0, N∗(0)] by T1(x0) = x(τ, x0), where x(t, x0) is the solution of Equation (19)
with initial condition x0, and T2 is defined similarly. It follows that Ti(0) = 0, Ṫi > 0, Ti(N

∗(0)) <

N∗(0), and Ṫi(0) > 1 for i = 1, 2 by the choice of η. Thus the map Ti has a unique positive fixed
point p̂i

η, p̂i
η < N∗(0), and solutions with positive initial conditions under forward iterations of

Ti converge to p̂i
η for i = 1, 2. Consequently, solutions of Equations (19) and (20) converge to

P̂ i
η , where P̂ i

η(t) is the corresponding positive τ -periodic solution of Equations (19) and (20),
respectively. On the other hand p̂i

η → p̂ as η → 0+ for i = 1, 2, where p̂ is the unique positive
fixed point for the Poincaré map induced by the equation

Ṗ = [αmf (N∗(t) − P)h(S0) − δ − D]P, 0 ≤ P(0) ≤ N∗(0). (21)

Therefore, system (16) has a unique τ -periodic solution (P̂ (t), 0, S0). Since y(t) ≤ P(t) ≤ x(t)

for all t ≥ t0, we see that limt→∞(P (t) − P̂ (t)) = 0 and the result follows. �

Suppose now ρ0 > 0 so that Equation (16) has the τ -periodic solution (P̂ (t), 0, S0). Define

ρ1 = 1

τ

∫ τ

0
[βcg(P̂ (t)) − δ − D]dt. (22)

Similar to σ1, ρ1 is the average net growth rate of zooplankton when phytoplankton is stabilized at
the level of P̂ (t). It is clear that (P̂ (t), 0, S0) is locally stable if ρ1 < 0. We are unable to reach the
conclusion analytically as whether Equation (16) has a positive τ -periodic solution when ρ1 < 0.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 O

f 
R

ho
de

 I
sl

an
d]

 a
t 1

1:
39

 0
1 

O
ct

ob
er

 2
01

2 



Journal of Biological Dynamics 25

Figure 3. This figure plots initial conditions of P(0) and Z(0) for system (16) when ρ1 < 0 < ρ0. Initial conditions
that converge to the periodic solution (P̂ (t), 0, S0) and to the positive periodic solution are denoted by ∗ and dots,
respectively.

We next adopt the same functionals as we did for the previous plots but with somewhat different
parameter values: α = 0.15, β = 0.35, and S0 = 1. In this case, ρ0 = 0.5145 > 0 and ρ1 =
−0.0199 < 0. The system has a periodic solution (P̂ (t), 0, S0), which is locally stable by the
above analysis. Figure 3 plots initial conditions using random number generator for fixed S(0).
From Figure 3, we see that as we increase S(0) the region of initial conditions of P(0) and Z(0)

that converge to the periodic solution (P̂ (t), 0, S0) gets larger and thus the populations are less
likely to persist.

On the other hand, if ρ0 > 0 and ρ1 > 0, applying a similar argument as in Theorem 2.4, one
can show that system (14) is uniformly persistent. The proof of the following theorem is parallel
to Theorem 2.4 and is therefore omitted.

THEOREM 3.3 If ρ0 > 0 and ρ1 > 0, then system (14) is uniformly persistent.

Similar to the interpretations of Theorem 2.4, both populations can survive if the average net
growth rates of phytoplankton and zooplankton are greater than zero when phytoplankton’s growth
rate is inhibited due to the toxin.
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4. A nutrient–plankton–toxin model with inhibition of the zooplankton

In this section, we will investigate the effects of toxin when it has a negative impact on the
zooplankton’s grazing rate while phytoplankton can uptake the toxin without any effect. This
scenario applies to chemical defence mechanisms reported both from fresh water and marine
environments as well as to the contamination of water bodies with insecticides such as carbaryl,
azadirachtin, or cypermetrin. Specifically, the model takes the following form:

Ṅ = D(N0(t) − N) − mf (N)P + δP + εZ + (1 − β)cg(P )h(S)Z + (1 − α)mf (N)P,

Ṗ = [αmf (N) − δ − D]P − cg(P )h(S)Z,

Ż = [βcg(P )h(S) − ε − D]Z, (23)

Ṡ = D(S0 − S) − dv(S)P, N(0), P (0), Z(0), S(0) ≥ 0,

where 0 < α, β ≤ 1 and D, S0, m, d, c, ε, δ > 0.
The functions f , g, N0(t), and h have the same assumptions as in the previous sections and v

has the same hypotheses as u given in Section 3, i.e., (H3). Observe that zooplankton’s grazing
rate does not depend on S. As in model (14) this is a first approximation to a more realistic system.
Since the effects of inhibition is upon the higher trophic level, the analysis of model (23) is very
similar to system (1). In particular, S(t) satisfies inequality (15). All solutions of Equation (23)
remain nonnegative and are bounded, and Equation (23) has the following limiting system:

Ṗ = [αmf (N∗(t) − P − Z) − δ − D]P − cg(P )h(S)Z,

Ż = [βcg(P )h(S) − ε − D]Z,

Ṡ = D(S0 − S) − dv(S)P, P (0), Z(0), S(0) ≥ 0, P (0) + Z(0) ≤ N∗(0),

(24)

where N∗(t) is the positive τ -periodic solution of Equation (2). Note Equation (24) is well-defined
and has a steady state solution (0, 0, S0) for which both plankton populations are not present.

Let σ0 be defined as in Section 2, i.e.,

σ0 = 1/τ

∫ τ

0
[αmf (N∗(t)) − δ − D]dt.

Then (0, 0, S0) is locally stable if σ0 < 0, and similar to Sections 2 and 3 it can be shown that all
solutions of Equation (24) converge to (0, 0, S0) when σ0 < 0.

PROPOSITION 4.1 If σ0 < 0, then solutions of Equation (24) satisfy limt→∞ P(t) =
limt→∞ Z(t) = 0 and limt→∞ S(t) = S0.

Suppose now σ0 > 0. Since the nonnegative PS-coordinate plane is forward invariant, we
consider the following PS-subsystem:

Ṗ = [αmf (N∗(t) − P) − δ − D]P,

Ṡ = D(S0 − S) − dv(S)P, P (0), S(0) ≥ 0, P (0) ≤ N∗(0). (25)

As the first equation can be decoupled from the second equation and it is indeed the Equation (9),
it follows that the first equation of the Equation (25) has a unique positive τ -periodic solution
P̄ (t) and solutions with P(0) > 0 converge to P̄ (t). Consider the following periodic equation:

Ṡ = D(S0 − S) − dv(S)P̄ (t). (26)

Let T2(S0) denote the Poincaré map induced by the above equation, i.e., T2(S0) = S(τ, S0), where
S(τ, S0) is the unique solution of Equation (26) with S(0) = S0. Notice T2(S

0) < S0, T2(0) > 0

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 O

f 
R

ho
de

 I
sl

an
d]

 a
t 1

1:
39

 0
1 

O
ct

ob
er

 2
01

2 



Journal of Biological Dynamics 27

and T ′
2(S) > 0 for S ≥ 0. We conclude that T2 has a unique positive fixed point S̄, S̄ < S0, and

limn→∞ T n
2 (S0) = S̄ for all S0 ≥ 0. As a result, Equation (26) has a unique positive τ -periodic

solution S̄(t), 0 < S̄(t) < S0 for t ≥ 0, and solutions of Equation (26) satisfy limt→∞ |S(t) −
S̄(t)| = 0. Moreover, it can be shown that solutions of Equation (24) with Z(0) = 0 are asymptotic
to (P̄ (t), 0, S̄(t)) as t → ∞.

Let

ρ̂1 = 1

τ

∫ τ

0
[βcg(P̄ (t))h(S̄(t)) − ε − D]dt. (27)

Parameter ρ̂1 is the average net growth rate of zooplankton when phytoplankton is stabilized at
the level of P̄ (t). If σ0 > 0 and ρ̂1 < 0, then parallel to Proposition 2.3 we have the following
result. The proof is similar to the proof of Proposition 2.3 and is omitted.

PROPOSITION 4.2 Let σ0 > 0 and ρ̂1 < 0. Then solutions (P (t), Z(t), S(t)) of Equation (24) with
P(0) > 0 converge to (P̄ (t), 0, S̄(t)) as t → ∞.

We next use parameter values: D = 0.07, δ = 0.04, ε = 0.01, c = 0.3, m = 5, α = 0.9,
β = 0.1, d = 2, b = 1, and S0 = 1 for system (24). In this case, σ0 > 0 and ρ̂1 < 0. Although
not presented in this manuscript, simulations reveal that solutions with P(0) > 0 all converge to
(P̄ (t), 0, S̄(t)) which validates Proposition 4.2. Similar to system (1), it can be shown that system
(23) is uniformly persistent if σ0 > 0 and ρ̂1 > 0.

THEOREM 4.3 The asymptotic dynamics of system (23) can be summarized below.

(a) If σ0 < 0, then solutions of Equation (23) satisfy limt→∞ |N(t) − N∗(t)| = limt→∞ P(t) =
limt→∞ Z(t) = 0.

(b) If σ0 > 0 and ρ̂1 < 0, then solutions of Equation (23) with P(0) > 0 satisfy limt→∞ |N(t) −
(N∗(t) − P̄ (t))| = limt→∞ |P(t) − P̄ (t)| = limt→∞ |S(t) − S̄(t)| = limt→∞ Z(t) = 0.

(c) If σ0 > 0 and ρ̂1 > 0, then system (23) is uniformly persistent and has a positive τ -periodic
solution.

When we use the same parameter values as above but with D = 0.01 and c = 0.5, then
σ0 = 3.6999 and ρ̂1 = 0.0253 > 0. Numerical simulations demonstrate that there exists a unique
positive periodic solution, which is moreover asymptotically stable.

5. Discussion

It is well documented that rivers, lakes, and oceans are polluted with either organic and/or inor-
ganic substances. In this manuscript, we present simple mathematical models to investigate toxic
effects upon the nutrient–plankton interaction. For simplicity, the proposed ecological systems
are assumed to be closed. However, the input nutrient is varied periodically. Although several
researchers [6,7,26,27] have studied the impact of viruses upon plankton interactions recently, to
the best of our knowledge, there exist no mathematical models of plankton–toxin in the literature
other than that in [14]. Moreover, Hsu and Waltman [16,17] have studied inhibition upon microor-
ganisms with models consisting of competing populations. In this manuscript, we investigate
predator–prey systems with a resource.

If nutrient concentration is input constantly instead of periodically in system (1), i.e., if
N0(t) ≡ N0, then σ0 reduces to αmf (N0) − δ − D, a threshold defined in [19]. The other thresh-
olds σ1, ρ0, ρ1, and ρ̂1 are the same as those introduced in [19] when N0(t) ≡ N0. In this
case, the results obtained in this study recover those results from the previous study [19]. These
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thresholds can be viewed as the average net growth rates of phytoplankton and zooplankton under
different circumstances when either toxin is absent, or present with effects to different trophic
levels.

The dynamical consequence of the populations when zooplankton’s grazing rate is inhibited
is very similar to the base model (1). This is probably because the effect is upon the higher food
chain level, which has less effect to the system. When toxin has a negative effect on the growth rate
of phytoplankton, inequality (15) implies that toxin will always remain in the system. As a result,
we cannot use σ0 to predict the system dynamics as we do for system (1) since σ0 is the average
net growth rate of phytoplankton when toxin is absent. At the other extreme, ρ0 is the average net
growth rate of phytoplankton when the toxin is at its maximal level S0 [inequality (15)].

The simulations in Figure 2 reveal that there exists a unique positive τ -periodic solution when
ρ0 < 0 < σ0, and solutions with small Z(0) converge to the steady state solution (0, 0, S0) where
both plankton populations are extinct, while solutions with larger Z(0) converge to the posi-
tive periodic solution where both plankton populations are present. This is due to the fact that
zooplankton can consume the toxin with no effect. Hence, zooplankton may be regarded as a
detoxifier for the environment. Both plankton populations can survive if zooplankton initially has
a higher population level to uptake the toxin. If zooplankton population level is not large enough
to counter-effect the negative impact of toxin upon the phytoplankton, then both populations will
become extinct.

When toxin has a negative effect on the phytoplankton, then ρ0 > 0 implies that the phyto-
plankton can survive in the absence of zooplankton (Proposition 3.2). If in addition ρ1 < 0, then
Figure 3 reveals that when S(0) is small, solutions converge to the positive τ -periodic solution
if Z(0) is small. As we increase S(0), we see that the region of initial conditions for which
only phytoplankton population can survive includes the lower left corner of small zooplankton
and phytoplankton populations, especially when S(0) is larger than 20. Notice in this numerical
example S0 = 4. Therefore, as S(0) is increased it will take longer time for S(t) to get closer to
S0 especially when Z(0) is small. Hence, the phytoplankton population’s growth rate is severely
inhibited for a considerable length of time and, as a result, the zooplankton will go extinct when
its population is initially small even when phytoplankton is initially large.

The models we consider in this paper only mimic simple ecological systems. More complicated
models would be necessary to describe the details of toxin and plankton interactions. Nonetheless,
our results can suggest possible explanations for observed properties concerning specific plankton
populations. For example, no plankton populations are present in the Derwent Estuary ofAustralia
(http://www.ea.gov.au/ssd/publications/ssr/129.html) despite there being abundant nutrients in the
region to support a phytoplankton population. Our results suggest that this is due to an inhibited
phytoplankton growth rate and an insufficient zooplankton population to uptake the known toxic
pollutants present in the system.
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