6.1 INNER PRODUCT, LENGTH, ORTHOGONALITY, \& ANGLE

- If \mathbf{u} and \mathbf{v} are vectors in \mathbb{R}^{n}, then we regard \mathbf{u} and \mathbf{v} as $\mathrm{n} \times 1$ matrices.
- The transpose \mathbf{u}^{T} is a $1 \times n$ matrix, and the matrix product $\mathbf{u}^{\top} \mathbf{v}$ is a 1×1 matrix, which we write as a single real number (a scalar) without brackets.
- The number $\mathbf{u}^{\top} \mathbf{v}$ is called the inner product (or dot product) of \mathbf{u} and \mathbf{v}, and it is written as $u \cdot v$.
- If $\mathrm{u}=\left[\begin{array}{c}u_{1} \\ u_{2} \\ \vdots \\ u_{n}\end{array}\right]$ and $\mathrm{v}=\left[\begin{array}{c}v_{1} \\ v_{2} \\ \vdots \\ v_{n}\end{array}\right]$ then the inner product of \mathbf{u} and \mathbf{v} is

$$
\left[\begin{array}{llll}
u_{1} & u_{2} & \cdots & u_{n}
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n}
$$

Example: Let $u=\left[\begin{array}{r}1 \\ -2\end{array}\right]$ and $v=\left[\begin{array}{r}2 \\ -5\end{array}\right]$ find inner product between u and v.

If \mathbf{v} is in \mathbb{R}^{n}, with entries v_{1}, \ldots, v_{n}, then the square root of $v \cdot v$ is defined because $v \cdot v$ is nonnegative.

Definition: The length (or norm) of \mathbf{v} is the nonnegative scalar $\|v\|$ defined by

$$
\|v\|=\sqrt{v \cdot v}=\sqrt{v_{1}^{2}+v_{2}^{2}+\cdots+v_{n}^{2}}, \text { and }\|v\|^{2}=v \cdot v
$$

- If we identify \mathbf{v} with a geometric point in the plane, as usual, then $\|v\|$ coincides with the standard notion of the length of the line segment from the origin to \mathbf{v}.
- This follows from the Pythagorean Theorem applied to a triangle such as the one shown in the following figure.

Interpretation of $\|\mathbf{v}\|$ as length.

- For any scalar c, the length $c v$ is $|c|$ times the length of v. That is,

$$
\|c \mathrm{v}\|=|c|\|\mathrm{v}\|
$$

A vector whose length is 1 is called a unit vector.
If we divide a nonzero vector \mathbf{v} by its length-that is, multiply by $1 /\|v\|-$ we obtain a unit vector \mathbf{u} because the length of \mathbf{u} is

- Example: Let $\mathbf{v}=(1,-2,2,0)$. Find a unit vector \mathbf{u} in the same direction as \mathbf{v}.
- Solution: First, compute the length of \mathbf{v} :

$$
\|\mathrm{v}\|^{2}=\mathrm{v} \cdot \mathrm{v}=(1)^{2}+(-2)^{2}+(2)^{2}+(0)^{2}=9
$$

$$
\|\mathrm{v}\|=\sqrt{9}=3
$$

- Then, multiply v by $1 /\|\mathrm{v}\|$ to obtain

$$
\mathrm{u}=\frac{1}{\|\mathrm{v}\|} \mathrm{v}=\frac{1}{3} \mathrm{v}=\frac{1}{3}\left[\begin{array}{r}
1 \\
-2 \\
2 \\
0
\end{array}\right]=\left[\begin{array}{r}
1 / 3 \\
-2 / 3 \\
2 / 3 \\
0
\end{array}\right]
$$

- Definition: For \mathbf{u} and \mathbf{v} in \mathbb{R}^{n}, the distance between \mathbf{u} and \mathbf{v}, written as dist (\mathbf{u}, \mathbf{v}), is the length of the vector $\mathbf{u}-\mathrm{V}$
. That is, $\quad \operatorname{dist}(u, v)=\|u-v\|$

The distance between \mathbf{u} and \mathbf{v} is the length of $\mathbf{u}-\mathbf{v}$.

Example: Compute the distance between the vectors $u=(7,1)$ and $\mathrm{v}=(3,2)$

$$
\begin{aligned}
u-v & =\left[\begin{array}{l}
7 \\
1
\end{array}\right]-\left[\begin{array}{l}
3 \\
2
\end{array}\right]=\left[\begin{array}{r}
4 \\
-1
\end{array}\right] \\
\|u-v\| & =\sqrt{4^{2}+(-1)^{2}}=\sqrt{17}
\end{aligned}
$$

- If \mathbf{u} and \mathbf{v} are nonzero vectors in either \mathbb{R}^{2} or \mathbb{R}^{3}, then there is a nice connection between their inner product and the angle ϑ between the two line segments from the origin to the points identified with \mathbf{u} and \mathbf{v}.
- The formula is $\mathrm{u} \bullet \mathrm{V}=\|\mathrm{u}\|\|\mathrm{v}\| \cos \vartheta$

The angle between two vectors.
Law of cosines,

$$
\|\mathrm{u}-\mathrm{v}\|^{2}=\|\mathrm{u}\|^{2}+\|\mathrm{v}\|^{2}-2\|\mathrm{u}\|\|\mathrm{v}\| \cos \vartheta
$$

Example: Let $u=\left[\begin{array}{r}1 \\ -2\end{array}\right]$ and $v=\left[\begin{array}{r}2 \\ -5\end{array}\right]$ find angle between u and v.

- Definition: Two vectors \mathbf{u} and \mathbf{v} in \mathbb{R}^{n} are orthogonal (to each other) if $u \cdot v=0$.

