
6.1 INNER PRODUCT, LENGTH, ORTHOGONALITY, & ANGLE

• If u and v are vectors in ℝ", then we regard u and v as n x 1  matrices.

• The transpose uT is a  1xn  matrix, and the matrix 
product uTv is a  1 x 1 matrix, which we write as a single real number (a 
scalar) without brackets.

• The number uTv is called the inner product (or dot product) of u and v, and 
it is written as # $ %.

• If                   and                         then the inner product of u and v is
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Example: Let                    and                     find  inner  product between u and v. 1
u
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If v is in ℝ", with entries v1, …, vn, then the square root of # $ # is defined because 
# $ # is nonnegative.

Definition: The length (or norm) of v is the nonnegative scalar       defined byv

# = # $ # = #&' + #'' +⋯+ #"', and # '= # $ #



• If we identify v with a geometric point in the plane, as usual, then       coincides 
with the standard notion of the length of the line segment from the origin to v.

• This follows from the Pythagorean Theorem applied to a triangle such as the 
one shown in the following figure.

• For any scalar c, the length cv is          times the length of v. That is,
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A vector whose length is 1 is called a unit vector.

If we divide a nonzero vector v by its length—that is, multiply by           —we 
obtain a unit vector u because the length of u is                    .
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• Example: Let                                     . Find a unit vector u in the same direction as v.
• Solution: First, compute the length of v:

• Then, multiply v by                  to obtain

v (1, 2,2,0)= -
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• Definition: For u and v in ℝ", the distance between u and v, written as dist (u, v), is 
the length of the vector

. That is,         
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Example: Compute the distance between the vectors                 
and                  

u (7,1)=
v (3,2)=
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• If u and v are nonzero vectors in either ℝ" or ℝ#, then there is a nice connection 
between their inner product and the angle       between the two line segments 
from the origin to the points identified with u and v. 

• The formula is 
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2 2 2u v u v 2 u v cosJ- = + -
Law of cosines,



• Definition: Two vectors u and v in ℝ" are orthogonal (to each other) if # $ % = 0.

Example: Let                    and                     find angle   between u and v.
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