2.3 Characterizations of Invertible Matrices

Theorem 8 (The Invertible Matrix Theorem)

Let *A* be a square $n \times n$ matrix. The the following statements are equivalent (i.e., for a given *A*, they are either all true or all false).

- a. A is an invertible matrix.
- b. A is row equivalent to I_n .
- c. A has n pivot positions.
- d. The equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- e. The columns of A form a linearly independent set.
- f. The linear transformation $\mathbf{x} \rightarrow A\mathbf{x}$ is one-to-one.
- g. The equation $A\mathbf{x} = \mathbf{b}$ has at least one solution for each \mathbf{b} in \mathbf{R}^n .
- h. The columns of A span \mathbf{R}^{n} .
- i. The linear transformation $\mathbf{x} \rightarrow A\mathbf{x}$ maps \mathbf{R}^n onto \mathbf{R}^n .
- j. There is an $n \times n$ matrix *C* such that $CA = I_n$.
- k. There is an $n \times n$ matrix D such that $AD = I_n$.
- I. A^T is an invertible matrix.

EXAMPLE: Use the Invertible Matrix Theorem to determine if A is invertible, where

	1	-3	0	7
A =	-4	11	1	
	2	7	3	

Solution

$$A = \begin{bmatrix} 1 & -3 & 0 \\ -4 & 11 & 1 \\ 2 & 7 & 3 \end{bmatrix} \sim \cdots \sim \begin{bmatrix} 1 & -3 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 16 \end{bmatrix}$$

3 pivots positions

Circle correct conclusion: Matrix *A is / is not* invertible.

EXAMPLE: Suppose *H* is a 5×5 matrix and suppose there is a vector **v** in **R**⁵ which is not a linear combination of the columns of *H*. What can you say about the number of solutions to $H\mathbf{x} = \mathbf{0}$?

.

Solution Since **v** in \mathbf{R}^5 is not a linear combination of the

columns of *H*, the columns of *H* do not _____ \mathbf{R}^5 .

So by the Invertible Matrix Theorem, $H\mathbf{x} = \mathbf{0}$ has