Section 5.2 The Characteristic Equation

Review:

$$
A \mathbf{x}=\lambda \mathbf{x}
$$

Find eigenvectors \mathbf{x} by solving $(A-\lambda I) \mathbf{x}=\mathbf{0}$.

How do we find the eigenvalues λ ?
x must be nonzero
\Downarrow
$(A-\lambda I) \mathbf{x}=\mathbf{0}$ must have nontrivial solutions
\Downarrow
$(A-\lambda I)$ is not invertible
\Downarrow

$$
\operatorname{det}(A-\lambda I)=0
$$

(called the characteristic equation)
Solve $\operatorname{det}(A-\lambda I)=0$ for λ to find the eigenvalues.
Characteristic polynomial: $\operatorname{det}(A-\lambda I)$
Characteristic equation: $\operatorname{det}(A-\lambda I)=0$
EXAMPLE: Find the eigenvalues of $A=\left[\begin{array}{cc}0 & 1 \\ -6 & 5\end{array}\right]$.
Solution: Since

$$
A-\lambda I=\left[\begin{array}{cc}
0 & 1 \\
-6 & 5
\end{array}\right]-\left[\begin{array}{ll}
\lambda & 0 \\
0 & \lambda
\end{array}\right]=\left[\begin{array}{cc}
-\lambda & 1 \\
-6 & 5-\lambda
\end{array}\right]
$$

the equation $\operatorname{det}(A-\lambda I)=0$ becomes

$$
\begin{gathered}
-\lambda(5-\lambda)+6=0 \\
\lambda^{2}-5 \lambda+6=0
\end{gathered}
$$

Factor:

$$
(\lambda-2)(\lambda-3)=0
$$

So the eigenvalues are 2 and 3 .
For a 3×3 matrix or larger, recall that a determinant can be computed by cofactor expansion.

EXAMPLE: Find the eigenvalues of $A=\left[\begin{array}{ccc}1 & 2 & 1 \\ 0 & -5 & 0 \\ 1 & 8 & 1\end{array}\right]$.
Solution:

$$
\begin{gathered}
A-\lambda I=\left[\begin{array}{ccc}
1-\frac{2}{0} & -5-\bar{L} & 1 \\
0 & 0 & 1-\ldots
\end{array}\right] \\
\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}
1-\lambda & 2 & 1 \\
0 & -5-\lambda & 0 \\
1 & 8 & 1-\lambda
\end{array}\right|=(-5-\lambda)\left|\begin{array}{cc}
1-\lambda & 1 \\
1 & 1-\lambda
\end{array}\right| \\
=(-5-\lambda)\left[(1-\lambda)^{2}-1\right]=(-5-\lambda)\left[1-2 \lambda+\lambda^{2}-1\right] \\
=(-5-\lambda)\left[-2 \lambda+\lambda^{2}\right]=-(5+\lambda) \lambda[-2+\lambda]=0 \\
\Rightarrow \lambda=-5,0,2
\end{gathered}
$$

THEOREM (The Invertible Matrix Theorem - continued)
Let A be an $n \times n$ matrix. Then A is invertible if and only if:
s. The number 0 is not an eigenvalue of A.
t. $\operatorname{det} A \neq 0$

Recall that if B is obtained from A by a sequence of row replacements or interchanges, but without scaling, then $\operatorname{det} A=(-1)^{r} \operatorname{det} B$, where r is the number of row interchanges.

Suppose the echelon form U is obtained from A by a sequence of row replacements or interchanges, but without scaling.

$$
A \sim U=\left[\begin{array}{ccccc}
u_{11} & u_{12} & u_{13} & \cdots & u_{1 n} \\
0 & u_{22} & u_{23} & \cdots & u_{2 n} \\
0 & 0 & u_{33} & \cdots & u_{3 n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & u_{n n}
\end{array}\right]
$$

The determinant of A, written $\operatorname{det} A$, is defined as follows:

$$
\operatorname{det} A= \begin{cases}(-1)^{r} \cdot\binom{\text { product of }}{\text { pivots in } U}, & \text { when } A \text { is invertible } \\ 0, & \text { when } A \text { is not invertible }\end{cases}
$$ (r is the number of row interchanges)

EXAMPLE: Find the eigenvalues of $A=\left[\begin{array}{rrr}3 & 2 & 3 \\ 0 & 6 & 10 \\ 0 & 0 & 2\end{array}\right]$.

Solution:

$$
\operatorname{det}(A-\lambda I)=\operatorname{det}\left[\begin{array}{rrr}
3-\lambda & 2 & 3 \\
0 & 6-\lambda & 10 \\
0 & 0 & 2-\lambda
\end{array}\right]
$$

Characteristic equation:

eigenvalues: \qquad , \qquad , \qquad

The (algebraic) multiplicity of an eigenvalue is its multiplicity as a root of the characteristic equation.

EXAMPLE: Find the characteristic polynomial of

$$
A=\left[\begin{array}{rrrr}
2 & 0 & 0 & 0 \\
5 & 3 & 0 & 0 \\
9 & 1 & 3 & 0 \\
1 & 2 & 5 & -1
\end{array}\right]
$$

and then find all the eigenvalues and the algebraic multiplicity of each eigenvalue.

Solution:

$$
\begin{gathered}
\operatorname{det}(A-\lambda I)=\left|\begin{array}{rrrr}
2-\lambda & 0 & 0 & 0 \\
5 & 3-\lambda & 0 & 0 \\
9 & 1 & 3-\lambda & 0 \\
1 & 2 & 5 & -1-\lambda
\end{array}\right| \\
=(2-\lambda)(3-\lambda)(3-\lambda)(-1-\lambda)=0
\end{gathered}
$$

eigenvalues: \qquad , \qquad , \qquad

Similarity

Numerical methods for finding approximating eigenvalues are based upon Theorem 4 to be described shortly.

For $n \times n$ matrices A and B, we say the A is similar to B if there is an invertible matrix P such that

$$
P^{-1} A P=B \quad \text { or equivalently, } \quad A=P B P^{-1} .
$$

Theorem 4: If $n \times n$ matrices A and B are similar, then they have the same characteristic polynomial and hence the same eigenvalues (with the same multiplicities).

Proof: If $B=P^{-1} A P$, then

$$
\begin{gathered}
\operatorname{det}(B-\lambda I)=\operatorname{det}\left[P^{-1} A P-P^{-1} \lambda I P\right]=\operatorname{det}\left[P^{-1}(A-\lambda I) P\right] \\
=\operatorname{det} P^{-1} \cdot \operatorname{det}(A-\lambda I) \cdot \operatorname{det} P=\operatorname{det}(A-\lambda I) .
\end{gathered}
$$

Application to Markov Chains

EXAMPLE Consider the migration matrix $M=\left[\begin{array}{cc}.95 & .90 \\ .05 & .10\end{array}\right]$ and define $\mathbf{x}_{k+1}=M \mathbf{x}_{k}$. It can be shown that

$$
\mathbf{x}_{0}, \mathbf{x}_{1}, \mathbf{X}_{2}, \ldots
$$

converges to a steady state vector $\mathbf{x}=\left[\begin{array}{c}\frac{1}{2} \\ \frac{1}{2}\end{array}\right]$. Why?
The answer lies in examining the corresponding eigenvectors.
First we find the eigenvalues:

$$
\operatorname{det}(M-\lambda I)=\operatorname{det}\left(\left[\begin{array}{cc}
.95-\lambda & .90 \\
.05 & .10-\lambda
\end{array}\right]\right)=\lambda^{2}-1.05 \lambda+0.05
$$

So solve

$$
\lambda^{2}-1.05 \lambda+0.05=0
$$

By factoring

$$
\lambda=0.05, \lambda=1
$$

It can be shown that the eigenspace corresponding to $\lambda=1$ is $\operatorname{span}\left\{\mathbf{v}_{1}\right\}$ where $\mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and the eigenspace corresponding to $\lambda=0.05$ is $\operatorname{span}\left\{\mathbf{v}_{2}\right\}$ where $\mathbf{v}_{2}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$.

Note that

$$
M \mathbf{v}_{1}=\mathbf{v}_{1},
$$

and so $\left[\begin{array}{c}\frac{1}{2} \\ \frac{1}{2}\end{array}\right]$ is our steady state vector.

Then for a given vector \mathbf{x}_{0},

$$
\begin{gathered}
\mathbf{x}_{0}=c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2} \\
\mathbf{x}_{1}=M \mathbf{x}_{0}=M\left(c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}\right)=c_{1} M \mathbf{v}_{1}+c_{2} M \mathbf{v}_{2}=c_{1} \mathbf{v}_{1}+c_{2}(0.05) \mathbf{v}_{2} \\
\mathbf{x}_{2}=M \mathbf{x}_{1}=M\left(c_{1} \mathbf{v}_{1}+c_{2}(0.05) \mathbf{v}_{2}\right)=c_{1} M \mathbf{v}_{1}+c_{2}(0.05) M \mathbf{v}_{2}=c_{1} \mathbf{v}_{1}+c_{2}(0.05)^{2} \mathbf{v}_{2} \\
\text { and in general } \\
\mathbf{x}_{k}=c_{1} \mathbf{v}_{1}+c_{2}(0.05)^{k} \mathbf{v}_{2} \\
\text { and so } \lim _{k \rightarrow \infty} \mathbf{x}_{k}=\lim _{k \rightarrow \infty}\left(c_{1} \mathbf{v}_{1}+c_{2}(0.05)^{k} \mathbf{v}_{2}\right)=c_{1} \mathbf{v}_{1}
\end{gathered}
$$

and this is the steady state when $c_{1}=\frac{1}{2}$.

