Section 4.6 Rank

The set of all linear combinations of the row vectors of a matrix A is called the row space of A and is denoted by Row A.

EXAMPLE: Let

$$
A=\left[\begin{array}{rrrr}
-1 & 2 & 3 & 6 \\
2 & -5 & -6 & -12 \\
1 & -3 & -3 & -6
\end{array}\right] \quad \text { and } \quad \begin{aligned}
& \mathbf{r}_{1}=(-1,2,3,6) \\
& \mathbf{r}_{2}=(2,-5,-6,-12) \\
& \mathbf{r}_{3}=(1,-3,-3,-6)
\end{aligned}
$$

Row $A=\operatorname{Span}\left\{\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}\right\}$ (a subspace of \mathbf{R}^{4})
While it is natural to express row vectors horizontally, they can also be written as column vectors if it is more convenient. Therefore

$$
\operatorname{Col} A^{T}=\operatorname{Row} A
$$

When we use row operations to reduce matrix A to matrix B, we are taking linear combinations of the rows of A to come up with B. We could reverse this process and use row operations on B to get back to A. Because of this, the row space of A equals the row space of B.

THEOREM 13

If two matrices A and B are row equivalent, then their row spaces are the same. If B is in echelon form, the nonzero rows of B form a basis for the row space of A as well as B.

EXAMPLE: The matrices

$$
A=\left[\begin{array}{rrrr}
-1 & 2 & 3 & 6 \\
2 & -5 & -6 & -12 \\
1 & -3 & -3 & -6
\end{array}\right] \text { and } B=\left[\begin{array}{rrrr}
-1 & 2 & 3 & 6 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

are row equivalent. Find a basis for row space, column space and null space of A. Also state the dimension of each.

Basis for Row $A:\{$
dim Row A : \qquad

$\operatorname{dim} \operatorname{Col} A:$ \qquad

To find Nul A, solve $A \mathbf{x}=\mathbf{0}$ first:

$$
\begin{aligned}
& {\left[\begin{array}{rrrrr}
-1 & 2 & 3 & 6 & 0 \\
2 & -5 & -6 & -12 & 0 \\
1 & -3 & -3 & -6 & 0
\end{array}\right] \sim\left[\begin{array}{rrrrr}
-1 & 2 & 3 & 6 & 0 \\
0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{ccccc}
1 & 0 & -3 & -6 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] } \\
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{r}
3 x_{3}+6 x_{4} \\
0 \\
x_{3} \\
x_{4}
\end{array}\right]=x_{3}\left[\begin{array}{l}
3 \\
0 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
6 \\
0 \\
0 \\
1
\end{array}\right] } \\
& \text { Basis for Nul } A:\left\{\left[\begin{array}{l}
3 \\
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
6 \\
0 \\
0 \\
1
\end{array}\right]\right\} \text { and dim Nul } A=-
\end{aligned}
$$

Note the following:
$\operatorname{dim} \operatorname{Col} A=\#$ of pivots of $A=\#$ of nonzero rows in $B=\operatorname{dim}$ Row A.
$\operatorname{dim} \operatorname{Nul} A=\#$ of free variables $=\#$ of nonpivot columns of A.

DEFINITION

The rank of A is the dimension of the column space of A.
$\operatorname{rank} A=\operatorname{dim} \operatorname{Col} A=\#$ of pivot columns of $A=\operatorname{dim}$ Row A.

THEOREM 14 THE RANK THEOREM

The dimensions of the column space and the row space of an $m \times n$ matrix A are equal. This common dimension, the rank of A, also equals the number of pivot positions in A and satisfies the equation

$$
\operatorname{rank} A+\operatorname{dim} \operatorname{Nul} A=n .
$$

Since Row $A=\operatorname{Col} A^{T}$,

$$
\operatorname{rank} A=\operatorname{rank} A^{T} .
$$

EXAMPLE: Suppose that a 5×8 matrix A has rank 5. Find $\operatorname{dim} \operatorname{Nul} A$, $\operatorname{dim} \operatorname{Row} A$ and rank A^{T}. Is $\operatorname{Col} A=\mathbf{R}^{5}$?

Solution:

$$
5+\operatorname{dim} \operatorname{Nul} A=8 \quad \Rightarrow \quad \operatorname{dim} \operatorname{Nul} A=
$$

\qquad
dim Row $A=\operatorname{rank} A=$ \qquad $\Rightarrow \quad \operatorname{rank} A^{T}=$ rank \qquad
\qquad

Since rank $A=\#$ of pivots in $A=5$, there is a pivot in every row. So the columns of A span \mathbf{R}^{5} (by Theorem 4, page 43). Hence Col $A=\mathbf{R}^{5}$.

EXAMPLE: For a 9×12 matrix A, find the smallest possible value of $\operatorname{dim} \operatorname{Nul} A$.

Solution:

$$
\begin{aligned}
& \text { rank } A+\operatorname{dim} \operatorname{Nul} A=12 \\
& \operatorname{dim} \operatorname{Nul} A=12-\underbrace{\operatorname{rank} A}_{\text {largest possible value }=}
\end{aligned}
$$ smallest possible value of $\operatorname{dim} \operatorname{Nul} A=$ \qquad

Visualizing Row A and Nul A

EXAMPLE: Let $A=\left[\begin{array}{rrr}1 & 0 & -1 \\ 2 & 0 & 2\end{array}\right]$. One can easily verify the following:
Basis for $\operatorname{Nul} A=\left\{\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]\right\}$ and therefore $\operatorname{Nul} A$ is a plane in \mathbf{R}^{3}.
Basis for Row $A=\left\{\left[\begin{array}{r}1 \\ 0 \\ -1\end{array}\right]\right\}$ and therefore Row A is a line in \mathbf{R}^{3}.

Basis for $\operatorname{Col} A=\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right]\right\}$ and therefore $\operatorname{Col} A$ is a line in \mathbf{R}^{2}.
Basis for $\operatorname{Nul} A^{T}=\left\{\left[\begin{array}{r}-2 \\ 1\end{array}\right]\right\}$ and therefore $\operatorname{Nul} A^{T}$ is a line in \mathbf{R}^{2}.

Subspaces Nul A and Row A
Subspaces $\operatorname{Nul} A^{T}$ and $\operatorname{Col} A$

The Rank Theorem provides us with a powerful tool for determining information about a system of equations.

EXAMPLE: A scientist solves a homogeneous system of 50 equations in 54 variables and finds that exactly 4 of the unknowns are free variables. Can the scientist be certain that any associated nonhomogeneous system (with the same coefficients) has a solution?

Solution: Recall that
rank $A=\operatorname{dim} \operatorname{Col} A=\#$ of pivot columns of A
$\operatorname{dim} \operatorname{Nul} A=\#$ of free variables

In this case $A \mathbf{x}=0$ of where A is 50×54.

By the rank theorem,
\qquad
or
rank $A=$ \qquad .

So any nonhomogeneous system $A \mathbf{x}=\mathbf{b}$ has a solution because there is a pivot in every row.

THE INVERTIBLE MATRIX THEOREM (continued)

Let A be a square $n \times n$ matrix. The the following statements are equivalent:
m . The columns of A form a basis for \mathbf{R}^{n}
n. $\operatorname{Col} A=\mathbf{R}^{n}$
o. $\operatorname{dim} \operatorname{Col} A=n$
p. $\operatorname{rank} A=n$
q. $\operatorname{Nul} A=\{\mathbf{0}\}$
r. $\operatorname{dim} \operatorname{Nul} A=0$

