4.5 The Dimension of a Vector Space

THEOREM 9

If a vector space *V* has a basis $\beta = {\mathbf{b}_1, ..., \mathbf{b}_n}$, then any set in *V* containing more than *n* vectors must be linearly dependent.

Proof: Suppose $\{\mathbf{u}_1, ..., \mathbf{u}_p\}$ is a set of vectors in *V* where p > n. Then the coordinate vectors $\{[\mathbf{u}_1]_{\beta}, ..., [\mathbf{u}_p]_{\beta}\}$ are in \mathbf{R}^n . Since p > n, $\{[\mathbf{u}_1]_{\beta}, ..., [\mathbf{u}_p]_{\beta}\}$ are linearly dependent and therefore $\{\mathbf{u}_1, ..., \mathbf{u}_p\}$ are linearly dependent.

THEOREM 10

If a vector space V has a basis of n vectors, then every basis of V must consist of n vectors.

Proof: Suppose β_1 is a basis for *V* consisting of exactly *n* vectors. Now suppose β_2 is any other basis for *V*. By the definition of a basis, we know that β_1 and β_2 are both linearly independent sets.

By Theorem 9, if β_1 has more vectors than β_2 , then _____ is a linearly dependent set (which cannot be the case).

Again by Theorem 9, if β_2 has more vectors than β_1 , then _____ is a linearly dependent set (which cannot be the case).

Therefore β_2 has exactly n vectors also.

DEFINITION

If *V* is spanned by a finite set, then *V* is said to be **finite-dimensional**, and the **dimension** of *V*, written as dim *V*, is the number of vectors in a basis for *V*. The dimension of the zero vector space $\{\mathbf{0}\}$ is defined to be 0. If *V* is not spanned by a finite set, then *V* is said to be **infinite-dimensional**.

EXAMPLE: The standard basis for P_3 is $\{$ $\}$. So dim $P_3 =$ ____.

In general, dim $\mathbf{P}_n = n + 1$.

EXAMPLE: The standard basis for \mathbb{R}^n is $\{\mathbf{e}_1, \dots, \mathbf{e}_n\}$ where $\mathbf{e}_1, \dots, \mathbf{e}_n$ are the columns of I_n . So, for example, dim $\mathbb{R}^3 = 3$.

EXAMPLE: Find a basis and the dimension of the subspace

$$W = \left\{ \begin{bmatrix} a+b+2c \\ 2a+2b+4c+d \\ b+c+d \\ 3a+3c+d \end{bmatrix} : a,b,c,d \text{ are real} \right\}.$$

Solution: Since $\begin{bmatrix} a+b+2c \\ 2a+2b+4c+d \\ b+c+d \\ 3a+3c+d \end{bmatrix} = a \begin{bmatrix} 1 \\ 2 \\ 0 \\ 3 \end{bmatrix} + b \begin{bmatrix} 1 \\ 2 \\ 1 \\ 0 \end{bmatrix} + c \begin{bmatrix} 2 \\ 4 \\ 1 \\ 3 \end{bmatrix} + d \begin{bmatrix} 0 \\ 1 \\ 1 \\ 1 \end{bmatrix},$

 $W = \operatorname{span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ where

$\mathbf{V}_1 =$	1	$, \mathbf{V}_2 =$	1	, v ₃ =	2	$, \mathbf{V}_4 =$	0].
	2		2		4		1	
	0		1		1		1	
	3		0		3		1	

- Note that v₃ is a linear combination of v₁ and v₂, so by the Spanning Set Theorem, we may discard v₃.
- \mathbf{v}_4 is not a linear combination of \mathbf{v}_1 and \mathbf{v}_2 . So $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_4\}$ is a basis for *W*.
- Also, dim *W* =____.

EXAMPLE: Dimensions of subspaces of R^3

0-dimensional subspace contains only the zero vector $\begin{cases} 0 \\ 0 \\ 0 \end{cases}$.

1-dimensional subspaces. Span $\{v\}$ where $v \neq 0$ is in \mathbb{R}^3 .

These subspaces are ______ through the origin.

2-dimensional subspaces. Span $\{u, v\}$ where u and v are in \mathbb{R}^3 and are not multiples of each other.

These subspaces are ______ through the origin.

3-dimensional subspaces. Span $\{u, v, w\}$ where u, v, w are linearly independent vectors in \mathbb{R}^3 . This subspace is \mathbb{R}^3 itself because the columns of $A = \begin{bmatrix} u & v & w \end{bmatrix}$ span \mathbb{R}^3 according to the IMT.

THEOREM 11

Let *H* be a subspace of a finite-dimensional vector space *V*. Any linearly independent set in *H* can be expanded, if necessary, to a basis for *H*. Also, *H* is finite-dimensional and

 $\dim H \leq \dim V.$

EXAMPLE: Let $H = \operatorname{span}\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \right\}$. Then H is a subspace of \mathbb{R}^3 and $\dim H < \dim \mathbb{R}^3$. We could expand the spanning set $\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \right\}$ to $\left\{ \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} \right\}$ to form a basis for \mathbb{R}^3 .

THEOREM 12 THE BASIS THEOREM

Let *V* be a p – dimensional vector space, $p \ge 1$. Any linearly independent set of exactly p vectors in *V* is automatically a basis for *V*. Any set of exactly p vectors that spans *V* is automatically a basis for *V*.

EXAMPLE: Show that $\{t, 1 - t, 1 + t - t^2\}$ is a basis for **P**₂.

Solution: Let $\mathbf{v}_1 = t$, $\mathbf{v}_2 = 1 - t$, $\mathbf{v}_3 = 1 + t - t^2$ and $\beta = \{1, t, t^2\}$.

Corresponding coordinate vectors

$$\begin{bmatrix} \mathbf{v}_1 \end{bmatrix}_{\beta} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} \mathbf{v}_2 \end{bmatrix}_{\beta} = \begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} \mathbf{v}_3 \end{bmatrix}_{\beta} = \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix}$$

 $[\mathbf{v}_2]_{\beta}$ is not a multiple of $[\mathbf{v}_1]_{\beta}$

 $[\mathbf{v}_3]_{\beta}$ is not a linear combination of $[\mathbf{v}_1]_{\beta}$ and $[\mathbf{v}_2]_{\beta}$

 $\Rightarrow \{ [\mathbf{v}_1]_{\beta}, [\mathbf{v}_2]_{\beta}, [\mathbf{v}_3]_{\beta} \}$ is linearly independent and therefore $\{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \}$ is also linearly independent.

Since dim $P_2 = 3$, $\{v_1, v_2, v_3\}$ is a basis for P_2 according to The Basis Theorem.

Dimensions of Col A and Nul A

Recall our techniques to find basis sets for column spaces and null spaces.

EXAMPLE: Suppose $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 7 & 8 \end{bmatrix}$. Find dim Col A and dim Nul A.

Solution

$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 7 & 8 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

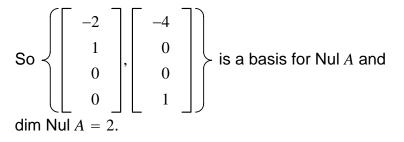
So $\{ \begin{bmatrix} \\ \\ \\ \end{bmatrix}, \begin{bmatrix} \\ \\ \\ \end{bmatrix} \}$ is a basis for Col A and dim Col A = 2.

Now solve $A\mathbf{x} = \mathbf{0}$ by row-reducing the corresponding augmented matrix. Then we arrive at

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 0 \\ 2 & 4 & 7 & 8 & 0 \end{bmatrix} \sim \dots \sim \begin{bmatrix} 1 & 2 & 0 & 4 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$
$$x_1 = -2x_2 - 4x_4$$
$$x_3 = 0$$

and

$\begin{bmatrix} x_1 \end{bmatrix}$	[2 -2		
x_2	$-r_{a}$	1	$+ x_4$	0
<i>x</i> ₃	$= x_2$	0	$\pm \lambda_4$	0
X4		0		1



Note

dim Col A = number of pivot columns of A	
dim Nul A = number of free variables of A].