4.1 Vector Spaces \& Subspaces

Many concepts concerning vectors in \mathbf{R}^{n} can be extended to other mathematical systems.
We can think of a vector space in general, as a collection of objects that behave as vectors do in \mathbf{R}^{n}. The objects of such a set are called vectors.

A vector space is a nonempty set V of objects, called vectors, on which are defined two operations, called addition and multiplication by scalars (real numbers), subject to the ten axioms below. The axioms must hold for all \mathbf{u}, \mathbf{v} and \mathbf{w} in V and for all scalars c and d.

1. $\mathbf{u}+\mathbf{v}$ is in V.
2. $\mathbf{u}+\mathbf{v}=\mathbf{v}+\mathbf{u}$.
3. $(\mathbf{u}+\mathbf{v})+\mathbf{w}=\mathbf{u}+(\mathbf{v}+\mathbf{w})$
4. There is a vector (called the zero vector) $\mathbf{0}$ in V such that $\mathbf{u}+\mathbf{0}=\mathbf{u}$.
5. For each \mathbf{u} in V, there is vector $-\mathbf{u}$ in V satisfying $\mathbf{u}+(-\mathbf{u})=\mathbf{0}$.
6. $c u$ is in V.
7. $c(\mathbf{u}+\mathbf{v})=c \mathbf{u}+c \mathbf{v}$.
8. $(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}$.
9. $(c d) \mathbf{u}=c(d \mathbf{u})$.
10. $1 \mathbf{u}=\mathbf{u}$.

Vector Space Examples

EXAMPLE: Let $M_{2 \times 2}=\left\{\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]: a, b, c, d\right.$ are real $\}$
In this context, note that the $\mathbf{0}$ vector is $[\square$.

EXAMPLE: Let $n \geq 0$ be an integer and let

$$
\mathbf{P}_{n}=\text { the set of all polynomials of degree at most } n \geq 0 \text {. }
$$

Members of \mathbf{P}_{n} have the form

$$
\mathbf{p}(t)=a_{0}+a_{1} t+a_{2} t^{2}+\cdots+a_{n} t^{n}
$$

where $a_{0}, a_{1}, \ldots, a_{n}$ are real numbers and t is a real variable. The set \mathbf{P}_{n} is a vector space.

We will just verify 3 out of the 10 axioms here.

Let $\mathbf{p}(t)=a_{0}+a_{1} t+\cdots+a_{n} t^{n}$ and $\mathbf{q}(t)=b_{0}+b_{1} t+\cdots+b_{n} t^{n}$. Let c be a scalar.

Axiom 1:

The polynomial $\mathbf{p}+\mathbf{q}$ is defined as follows: $(\mathbf{p}+\mathbf{q})(t)=\mathbf{p}(t)+\mathbf{q}(t)$. Therefore,

$$
\begin{gathered}
(\mathbf{p}+\mathbf{q})(t)=\mathbf{p}(t)+\mathbf{q}(t) \\
=(\square)+(\square) t+\cdots+(\square
\end{gathered}
$$

which is also a \qquad of degree at most \qquad . So $\mathbf{p}+\mathbf{q}$ is in \mathbf{P}_{n}.

Axiom 4:

$$
\begin{gathered}
\begin{array}{c}
\mathbf{0}=0+0 t+\cdots+0 t^{n} \\
\left(\text { zero vector in } \mathbf{P}_{n}\right) \\
(\mathbf{p}+\mathbf{0})(t)=\mathbf{p}(t)+\mathbf{0}=\left(a_{0}+0\right)+\left(a_{1}+0\right) t+\cdots+\left(a_{n}+0\right) t^{n} \\
=a_{0}+a_{1} t+\cdots+a_{n} t^{n}=\mathbf{p}(t) \\
\text { and so } \mathbf{p}+\mathbf{0}=\mathbf{p}
\end{array} \text { }
\end{gathered}
$$

Axiom 6:

$$
(c \mathbf{p})(t)=c \mathbf{p}(t)=\left(ـ_{\square}\right)+\left(ـ_{\square}\right) t+\cdots+(\ldots)
$$ which is in \mathbf{P}_{n}.

The other 7 axioms also hold, so \mathbf{P}_{n} is a vector space.

Subspaces

Vector spaces may be formed from subsets of other vectors spaces. These are called subspaces.

A subspace of a vector space V is a subset H of V that has three properties:
a. The zero vector of V is in H.
b. For each \mathbf{u} and \mathbf{v} are in $H, \mathbf{u}+\mathbf{v}$ is in H. (In this case we say H is closed under vector addition.)
c. For each \mathbf{u} in H and each scalar $c, c \mathbf{u}$ is in H. (In this case we say H is closed under scalar multiplication.)

If the subset H satisfies these three properties, then H itself is a vector space.
EXAMPLE: Let $H=\left\{\left[\begin{array}{l}a \\ 0 \\ b\end{array}\right]: a\right.$ and b are real $\}$. Show that H is a subspace of \mathbf{R}^{3}.
Solution: Verify properties a, b and c of the definition of a subspace.
a. The zero vector of \mathbf{R}^{3} is in H (let $a=$ \qquad and $b=$ \qquad).
b. Adding two vectors in H always produces another vector whose second entry is \qquad and therefore the sum of two vectors in H is also in H. (H is closed under addition)
c. Multiplying a vector in H by a scalar produces another vector in H (H is closed under scalar multiplication).

Since properties a, b, and chold, V is a subspace of \mathbf{R}^{3}. Note: Vectors $(a, 0, b)$ in H look and act like the points (a, b) in \mathbf{R}^{2}.

EXAMPLE: Is $H=\left\{\left[\begin{array}{c}x \\ x+1\end{array}\right]: x\right.$ is real $\}$ a subspace of \qquad ?
l.e., does H satisfy properties a, b and c ?

Graphical Depiction of H
Solution:

All three properties must hold in order for H to be a subspace of \mathbf{R}^{2}.

Property (a) is not true because

Therefore H is not a subspace of \mathbf{R}^{2}.
Another way to show that H is not a subspace of \mathbf{R}^{2} : Let

$$
\mathbf{u}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \text { and } \mathbf{v}=\left[\begin{array}{l}
1 \\
2
\end{array}\right], \text { then } \mathbf{u}+\mathbf{v}=[
$$

and so $\mathbf{u}+\mathbf{v}=\left[\begin{array}{l}1 \\ 3\end{array}\right]$, which is ___ in H. So property (b) fails and so H is not a subspace of \mathbf{R}^{2}.

Property (a) fails

Property (b) fails

A Shortcut for Determining Subspaces

THEOREM 1

If $\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}$ are in a vector space V, then $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is a subspace of V.

Proof: In order to verify this, check properties a, b and c of definition of a subspace.
a. \mathbf{O} is in $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ since

$$
\mathbf{0}=\ldots \quad \mathbf{v}_{1}+\ldots \quad \mathbf{v}_{2}+\cdots+\ldots \quad \mathbf{v}_{p}
$$

b. To show that $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ closed under vector addition, we choose two arbitrary vectors in $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$:

$$
\begin{aligned}
& \mathbf{u}=a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+\cdots+a_{p} \mathbf{v}_{p} \\
& \text { and } \\
& \mathbf{v}=b_{1} \mathbf{v}_{1}+b_{2} \mathbf{v}_{2}+\cdots+b_{p} \mathbf{v}_{p}
\end{aligned}
$$

Then

$$
\begin{gathered}
\mathbf{u}+\mathbf{v}=\left(a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+\cdots+a_{p} \mathbf{v}_{p}\right)+\left(b_{1} \mathbf{v}_{1}+b_{2} \mathbf{v}_{2}+\cdots+b_{p} \mathbf{v}_{p}\right) \\
=\left(\ldots \mathbf{v}_{1}+\ldots \quad \mathbf{v}_{1}\right)+\left(\ldots \mathbf{v}_{2}+\ldots \mathbf{v}_{2}\right)+\cdots+\left(\ldots \mathbf{v}_{p}+\ldots \mathbf{v}_{p}\right) \\
=\left(a_{1}+b_{1}\right) \mathbf{v}_{1}+\left(a_{2}+b_{2}\right) \mathbf{v}_{2}+\cdots+\left(a_{p}+b_{p}\right) \mathbf{v}_{p} .
\end{gathered}
$$

So $\mathbf{u}+\mathbf{v}$ is in $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$.
c. To show that $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ closed under scalar multiplication, choose an arbitrary number c and an arbitrary vector in $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$:

$$
\mathbf{v}=b_{1} \mathbf{v}_{1}+b_{2} \mathbf{v}_{2}+\cdots+b_{p} \mathbf{v}_{p}
$$

Then

$$
\begin{gathered}
c \mathbf{v}=c\left(b_{1} \mathbf{v}_{1}+b_{2} \mathbf{v}_{2}+\cdots+b_{p} \mathbf{v}_{p}\right) \\
=_\quad \mathbf{v}_{1}+\ldots \quad \mathbf{v}_{2}+\cdots+\ldots \quad \mathbf{v}_{p}
\end{gathered}
$$

So $c \mathbf{v}$ is in $\operatorname{Span}\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$.

Since properties a, b and chold, Span $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{p}\right\}$ is a subspace of V.

Recap

1. To show that H is a subspace of a vector space, use Theorem 1.
2. To show that a set is not a subspace of a vector space, provide a specific example showing that at least one of the axioms a, b or c (from the definition of a subspace) is violated.

EXAMPLE: Is $V=\{(a+2 b, 2 a-3 b): a$ and b are real $\}$ a subspace of \mathbf{R}^{2} ? Why or why not? Solution: Write vectors in V in column form:

$$
\left[\begin{array}{c}
a+2 b \\
2 a-3 b
\end{array}\right]=\left[\begin{array}{c}
a \\
2 a
\end{array}\right]+\left[\begin{array}{c}
2 b \\
-3 b
\end{array}\right]=-\left[\begin{array}{l}
1 \\
2
\end{array}\right]+\ldots\left[\begin{array}{c}
2 \\
-3
\end{array}\right]
$$

So $V=\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$ and therefore V is a subspace of \qquad by Theorem 1.

EXAMPLE: Is $H=\left\{\left[\begin{array}{c}a+2 b \\ a+1 \\ a\end{array}\right]: a\right.$ and b are real $\}$ a subspace of \mathbf{R}^{3} ? Why or why not?

Solution: $\mathbf{0}$ is not in H since $a=b=0$ or any other combination of values for a and b does not produce the zero vector. So property \qquad fails to hold and therefore H is not a subspace of \mathbf{R}^{3}.

EXAMPLE: Is the set H of all matrices of the form $\left[\begin{array}{cc}2 a & b \\ 3 a+b & 3 b\end{array}\right]$ a subspace of $M_{2 \times 2}$? Explain.

Solution: Since

$$
\begin{gathered}
{\left[\begin{array}{cc}
2 a & b \\
3 a+b & 3 b
\end{array}\right]=\left[\begin{array}{cc}
2 a & 0 \\
3 a & 0
\end{array}\right]+\left[\begin{array}{cc}
0 & b \\
b & 3 b
\end{array}\right]} \\
=a[
\end{gathered}
$$

Therefore $H=$ Span $\left\{\left[\begin{array}{ll}2 & 0 \\ 3 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 3\end{array}\right]\right\}$ and so H is a subspace of $M_{2 \times 2}$.

