2.1 Matrix Operations

Matrix Notation:

Two ways to denote $m \times n$ matrix A :

In terms of the columns of A :

$$
A=\left[\begin{array}{llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n}
\end{array}\right]
$$

In terms of the entries of A :

$$
A=\left[\begin{array}{ccccc}
a_{11} & \cdots & a_{1 j} & \cdots & a_{1 n} \\
\vdots & & & & \vdots \\
a_{i 1} & \cdots & a_{i j} & \cdots & a_{i n} \\
\vdots & & \vdots & & \vdots \\
a_{m 1} & \cdots & a_{m j} & \cdots & a_{m n}
\end{array}\right]
$$

Main diagonal entries:

Zero matrix:

$$
0=\left[\begin{array}{ccccc}
0 & \cdots & 0 & \cdots & 0 \\
\vdots & & & & \vdots \\
0 & \cdots & 0 & \cdots & 0 \\
\vdots & & \vdots & & \vdots \\
0 & \cdots & 0 & \cdots & 0
\end{array}\right]
$$

THEOREM 1

Let A, B, and C be matrices of the same size, and let r and s be scalars. Then
a. $A+B=B+A$
b. $(A+B)+C=A+(B+C)$
d. $r(A+B)=r A+r B$
e. $(r+s) A=r A+s A$
C. $A+0=A$
f. $r(s A)=(r s) A$

Matrix Multiplication

Multiplying B and \mathbf{x} transforms \mathbf{x} into the vector $B \mathbf{x}$. In turn, if we multiply A and $B \mathbf{x}$, we transform $B \mathbf{x}$ into $A(B \mathbf{x})$. So $A(B \mathbf{x})$ is the composition of two mappings.

Define the product $A B$ so that $A(B \mathbf{x})=(A B) \mathbf{x}$.

Suppose A is $m \times n$ and B is $n \times p$ where

$$
B=\left[\begin{array}{llll}
\mathbf{b}_{1} & \mathbf{b}_{2} & \cdots & \mathbf{b}_{p}
\end{array}\right] \text { and } \mathbf{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{p}
\end{array}\right]
$$

Then

$$
\begin{gathered}
B \mathbf{x}=x_{1} \mathbf{b}_{1}+x_{2} \mathbf{b}_{2}+\cdots+x_{p} \mathbf{b}_{p} \\
\text { and } \\
A(B \mathbf{x})=A\left(x_{1} \mathbf{b}_{1}+x_{2} \mathbf{b}_{2}+\cdots+x_{p} \mathbf{b}_{p}\right) \\
=A\left(x_{1} \mathbf{b}_{1}\right)+A\left(x_{2} \mathbf{b}_{2}\right)+\cdots+A\left(x_{p} \mathbf{b}_{p}\right) \\
=x_{1} A \mathbf{b}_{1}+x_{2} A \mathbf{b}_{2}+\cdots+x_{p} A \mathbf{b}_{p}=\left[\begin{array}{lll}
A \mathbf{b}_{1} & A \mathbf{b}_{2} & \cdots A \mathbf{b}_{p}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{p}
\end{array}\right] .
\end{gathered}
$$

Therefore,

$$
A(B \mathbf{x})=\left[\begin{array}{llll}
A \mathbf{b}_{1} & A \mathbf{b}_{2} & \cdots & A \mathbf{b}_{p}
\end{array}\right] \mathbf{x}
$$

and by defining

$$
A B=\left[\begin{array}{llll}
A \mathbf{b}_{1} & A \mathbf{b}_{2} & \cdots & A \mathbf{b}_{p}
\end{array}\right]
$$

we have $A(B \mathbf{x})=(A B) \mathbf{x}$.

EXAMPLE: Compute $A B$ where $A=\left[\begin{array}{rr}4 & -2 \\ 3 & -5 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}2 & -3 \\ 6 & -7\end{array}\right]$.
Solution:

$$
\begin{array}{cc}
A \mathbf{b}_{1}=\left[\begin{array}{cc}
4 & -2 \\
3 & -5 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
6
\end{array}\right], & A \mathbf{b}_{2}=\left[\begin{array}{ll}
4 & -2 \\
3 & -5 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
-3 \\
-7
\end{array}\right] \\
=\left[\begin{array}{c}
-4 \\
-24 \\
6
\end{array}\right] \\
\Rightarrow A B=\left[\begin{array}{c}
2 \\
26 \\
-7
\end{array}\right] \\
\Rightarrow\left[\begin{array}{rr}
-4 & 2 \\
-24 & 26 \\
6 & -7
\end{array}\right]
\end{array}
$$

Note that $A \mathbf{b}_{1}$ is a linear combination of the columns of A and $A \mathbf{b}_{2}$ is a linear combination of the columns of A.

Each column of $A B$ is a linear combination of the columns of A using weights from the corresponding columns of B.

EXAMPLE: If A is 4×3 and B is 3×2, then what are the sizes of $A B$ and $B A$?

Solution:

$$
A B=\left[\begin{array}{lll}
* & * & * \\
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right]\left[\begin{array}{ll}
* & * \\
* & * \\
* & *
\end{array}\right]=[
$$

$$
\begin{aligned}
B A \text { would be }\left[\begin{array}{cc}
* & * \\
* & * \\
* & *
\end{array}\right]\left[\begin{array}{ccc}
* & * & * \\
* & * & * \\
* & * & * \\
* & * & *
\end{array}\right] \text { which is } \\
\text { If } A \text { is } m \times n \text { and } B \text { is } n \times p, \text { then } A B \text { is } m \times p .
\end{aligned}
$$

Row-Column Rule for Computing AB (alternate method)

The definition

$$
A B=\left[\begin{array}{llll}
A \mathbf{b}_{1} & A \mathbf{b}_{2} & \cdots & A \mathbf{b}_{p}
\end{array}\right]
$$

is good for theoretical work.

When A and B have small sizes, the following method is more efficient when working by hand.

If $A B$ is defined, let $(A B)_{i j}$ denote the entry in the ith row and jth column of $A B$. Then

$$
(A B)_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i n} b_{n j}
$$

$(A B)_{i j}$

EXAMPLE $\quad A=\left[\begin{array}{rrr}2 & 3 & 6 \\ -1 & 0 & 1\end{array}\right], B=\left[\begin{array}{rr}2 & -3 \\ 0 & 1 \\ 4 & -7\end{array}\right]$. Compute $A B$, if it is defined.
Solution: Since A is 2×3 and B is 3×2, then $A B$ is defined and $A B$ is \qquad \times \qquad .
$A B=\left[\begin{array}{rrr}2 & 3 & 6 \\ -1 & 0 & 1\end{array}\right]\left[\begin{array}{cc}2 & -3 \\ 0 & 1 \\ 4 & -7\end{array}\right]=\left[\begin{array}{ll}28 & \square \\ \boldsymbol{\square} & \square\end{array}\right],\left[\begin{array}{rrr}2 & 3 & 6 \\ -1 & 0 & 1\end{array}\right]\left[\begin{array}{cc}2 & -3 \\ 0 & 1 \\ 4 & -7\end{array}\right]=\left[\begin{array}{cc}28 & -45 \\ \square & \square\end{array}\right]$
$\left[\begin{array}{rrr}2 & 3 & 6 \\ -\mathbf{1} & \mathbf{0} & \mathbf{1}\end{array}\right]\left[\begin{array}{cc}\mathbf{2} & -3 \\ \mathbf{0} & 1 \\ \mathbf{4} & -7\end{array}\right]=\left[\begin{array}{rr}28 & -45 \\ \mathbf{2} & \boldsymbol{\square}\end{array}\right], \quad\left[\begin{array}{rrr}2 & 3 & 6 \\ -1 & \mathbf{0} & \mathbf{1}\end{array}\right]\left[\begin{array}{cc}2 & -\mathbf{3} \\ 0 & \mathbf{1} \\ 4 & -7\end{array}\right]=\left[\begin{array}{cc}28 & -45 \\ 2 & -\mathbf{4}\end{array}\right]$
So $A B=\left[\begin{array}{cc}28 & -45 \\ 2 & -4\end{array}\right]$.

THEOREM 2

Let A be $m \times n$ and let B and C have sizes for which the indicated sums and products are defined.
a. $A(B C)=(A B) C \quad$ (associative law of multiplication)
b. $A(B+C)=A B+A C \quad$ (left - distributive law)
c. $(B+C) A=B A+C A \quad$ (right-distributive law)
d. $r(A B)=(r A) B=A(r B)$
for any scalar r
e. $I_{m} A=A=A I_{n} \quad$ (identity for matrix multiplication)

WARNINGS

Properties above are analogous to properties of real numbers. But NOT ALL real number properties correspond to matrix properties.

1. It is not the case that $A B$ always equal $B A$. (see Example 7, page 114)
2. Even if $A B=A C$, then B may not equal C. (see Exercise 10, page 116)
3. It is possible for $A B=0$ even if $A \neq 0$ and $B \neq 0$. (see Exercise 12, page 116)

Powers of A

$$
A^{k}=\underbrace{A \cdots A}_{k}
$$

EXAMPLE:

$$
\left[\begin{array}{ll}
1 & 0 \\
3 & 2
\end{array}\right]^{3}=\left[\begin{array}{ll}
1 & 0 \\
3 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
3 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
3 & 2
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
3 & 2
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
21 & 8
\end{array}\right]
$$

If A is $m \times n$, the transpose of A is the $n \times m$ matrix, denoted by A^{T}, whose columns are formed from the corresponding rows of A.

EXAMPLE:

$$
A=\left[\begin{array}{lllll}
1 & 2 & 3 & 4 & 5 \\
6 & 7 & 8 & 9 & 8 \\
7 & 6 & 5 & 4 & 3
\end{array}\right] \quad \Rightarrow \quad A^{T}=\left[\begin{array}{lll}
1 & 6 & 7 \\
2 & 7 & 6 \\
3 & 8 & 5 \\
4 & 9 & 4 \\
5 & 8 & 3
\end{array}\right]
$$

EXAMPLE: Let $A=\left[\begin{array}{lll}1 & 2 & 0 \\ 3 & 0 & 1\end{array}\right], B=\left[\begin{array}{rr}1 & 2 \\ 0 & 1 \\ -2 & 4\end{array}\right]$. Compute $A B,(A B)^{T}, A^{T} B^{T}$ and $B^{T} A^{T}$.

Solution:

$$
\left.\begin{array}{c}
A B=\left[\begin{array}{lll}
1 & 2 & 0 \\
3 & 0 & 1
\end{array}\right]\left[\begin{array}{rr}
1 & 2 \\
0 & 1 \\
-2 & 4
\end{array}\right]=\left[\begin{array}{l}
\\
(A B)^{T}=[
\end{array}\right] \\
A^{T} B^{T}= \\
B^{T} A^{T}=\left[\begin{array}{ll}
1 & 3 \\
2 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & -2 \\
2 & 1 & 4
\end{array}\right]=\left[\begin{array}{lll}
7 & 3 & 10 \\
2 & 0 & -4 \\
2 & 1 & 4
\end{array}\right] \\
2
\end{array} 1 \begin{array}{c}
4
\end{array}\right]\left[\begin{array}{ll}
1 & 3 \\
2 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
\end{array}\right]
$$

THEOREM 3

Let A and B denote matrices whose sizes are appropriate for the following sums and products.
a. $\left(A^{T}\right)^{T}=A$ (I.e., the transpose of A^{T} is A)
b. $(A+B)^{T}=A^{T}+B^{T}$
c. For any scalar $r,(r A)^{T}=r A^{T}$
d. $(A B)^{T}=B^{T} A^{T}$ (I.e. the transpose of a product of matrices equals the product of their transposes in reverse order.)

EXAMPLE: Prove that $(A B C)^{T}=$
Solution: By Theorem 3d,

$$
(A B C)^{T}=((A B) C)^{T}=C^{T}(\quad)^{T}=C^{T}(\quad)=
$$

\qquad

