1.7 Linear Independence

A homogeneous system such as

$$\begin{bmatrix} 1 & 2 & -3 \\ 3 & 5 & 9 \\ 5 & 9 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

can be viewed as a vector equation

$$x_{1}\begin{bmatrix}1\\3\\5\end{bmatrix}+x_{2}\begin{bmatrix}2\\5\\9\end{bmatrix}+x_{3}\begin{bmatrix}-3\\9\\3\end{bmatrix}=\begin{bmatrix}0\\0\\0\end{bmatrix}$$

The vector equation has the trivial solution ($x_1 = 0, x_2 = 0, x_3 = 0$), but is this the only solution?

Definition

A set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_p\}$ in \mathbf{R}^n is said to be **linearly independent** if the vector equation

$$x_1\mathbf{V}_1 + x_2\mathbf{V}_2 + \dots + x_p\mathbf{V}_p = \mathbf{0}$$

has only the trivial solution. The set $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ is said to be **linearly dependent** if there exists weights c_1, \dots, c_p , not all 0, such that

$$c_1\mathbf{v}_1 + c_2\mathbf{v}_2 + \dots + c_p\mathbf{v}_p = \mathbf{0}.$$

linear dependence relation (when weights are not all zero)

EXAMPLE Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 5 \\ 9 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} -3 \\ 9 \\ 3 \end{bmatrix}$.

a. Determine if $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ is linearly independent.

b. If possible, find a linear dependence relation among v_1, v_2, v_3 .

Solution: (a)

$$x_{1}\begin{bmatrix}1\\3\\5\end{bmatrix}+x_{2}\begin{bmatrix}2\\5\\9\end{bmatrix}+x_{3}\begin{bmatrix}-3\\9\\3\end{bmatrix}=\begin{bmatrix}0\\0\\0\end{bmatrix}.$$

Augmented matrix:

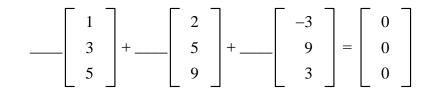
Γ	1	2	-3	0		1	2	-3	0]	$\begin{bmatrix} 1\\ 0 \end{bmatrix}$	2	-3	0	
	3	5	9	0	~	0	-1	18	0	~	0	-1	18	0	
	5	9	3	0		0	-1	18	0		0	0	0	0	

 x_3 is a free variable \Rightarrow there are nontrivial solutions.

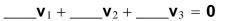
 $\{\boldsymbol{v}_1,\boldsymbol{v}_2,\boldsymbol{v}_3\}$ is a linearly dependent set

(b) Reduced echelon form:
$$\begin{bmatrix} 1 & 0 & 33 & 0 \\ 0 & 1 & -18 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{x_1} x_2 = x_3$$

Let $x_3 =$ _____ (any nonzero number). Then $x_1 =$ _____ and $x_2 =$ _____.



or



(one possible linear dependence relation)

Linear Independence of Matrix Columns

A linear dependence relation such as

$$-33\begin{bmatrix}1\\3\\5\end{bmatrix}+18\begin{bmatrix}2\\5\\9\end{bmatrix}+1\begin{bmatrix}-3\\9\\3\end{bmatrix}=\begin{bmatrix}0\\0\\0\end{bmatrix}$$

can be written as the matrix equation:

1	2	-3	-33		0	
3	5	9	18	=	0	.
_ 5	9	3	1		0	

Each linear dependence relation among the columns of A corresponds to a nontrivial solution to $A\mathbf{x} = \mathbf{0}$.

The columns of matrix A are linearly independent if and only if the equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.

Special Cases

Sometimes we can determine linear independence of a set with minimal effort.

1. A Set of One Vector

Consider the set containing one nonzero vector: $\{v_1\}$

The only solution to $x_1 \mathbf{v}_1 = 0$ is $x_1 =$ ____.

So $\{\mathbf{v}_1\}$ is linearly independent when $\mathbf{v}_1 \neq \mathbf{0}$.

2. A Set of Two Vectors

EXAMPLE Let

$$\mathbf{u}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \, \mathbf{u}_2 = \begin{bmatrix} 4 \\ 2 \end{bmatrix}, \, \mathbf{v}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \, \mathbf{v}_2 = \begin{bmatrix} 2 \\ 3 \end{bmatrix}.$$

a. Determine if $\{\mathbf{u}_1, \mathbf{u}_2\}$ is a linearly dependent set or a linearly independent set.

b. Determine if $\{v_1, v_2\}$ is a linearly dependent set or a linearly independent set.

Solution: (a) Notice that $\mathbf{u}_2 = \underline{\qquad} \mathbf{u}_1$. Therefore

 $\underline{\qquad} \mathbf{u}_1 + \underline{\qquad} \mathbf{u}_2 = 0$

This means that $\{\mathbf{u}_1, \mathbf{u}_2\}$ is a linearly ______ set.

(b) Suppose

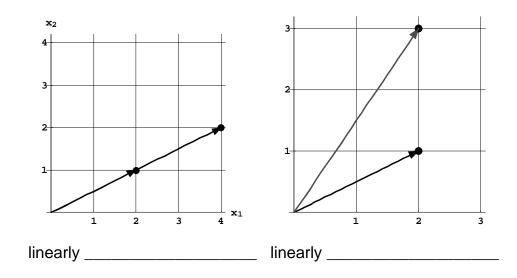
$$c\mathbf{v}_1 + d\mathbf{v}_2 = \mathbf{0}.$$

Then $\mathbf{v}_1 = - \mathbf{v}_2$ if $c \neq 0$. But this is impossible since \mathbf{v}_1 is _____ a multiple of \mathbf{v}_2 which means c =____.

Similarly, $\mathbf{v}_2 = - \mathbf{v}_1$ if $d \neq 0$. But this is impossible since \mathbf{v}_2 is not a multiple of \mathbf{v}_1 and so d = 0. This means that $\{\mathbf{v}_1, \mathbf{v}_2\}$ is a linearly ______ set.

A set of two vectors is linearly dependent if at least one vector is a multiple of the other.

A set of two vectors is linearly independent if and only if neither of the vectors is a multiple of the other.



3. A Set Containing the 0 Vector

Theorem 9

A set of vectors $S = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$ in \mathbf{R}^n containing the zero vector is linearly dependent.

Proof: Renumber the vectors so that $\mathbf{v}_1 =$ ____. Then

 $\underline{} \mathbf{v}_1 + \underline{} \mathbf{v}_2 + \cdots + \underline{} \mathbf{v}_p = \mathbf{0}$

which shows that *S* is linearly _____.

4. A Set Containing Too Many Vectors

Theorem 8

If a set contains more vectors than there are entries in each vector, then the set is linearly dependent. I.e. any set $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_p\}$ in \mathbf{R}^n is linearly dependent if p > n.

Outline of Proof:

$$A = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_p \end{bmatrix} \text{ is } n \times p$$

Suppose p > n.

 \Rightarrow A**x** = **0** has more variables than equations

 \Rightarrow A**x** = **0** has nontrivial solutions

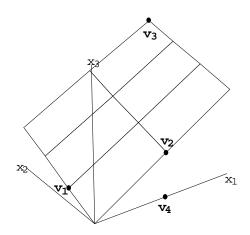
 \Rightarrow columns of A are linearly dependent

EXAMPLE With the least amount of work possible, decide which of the following sets of vectors are linearly independent and give a reason for each answer.

		1	2	3	4	5	٦
a. $\left\{ \begin{bmatrix} 3 \\ 2 \end{bmatrix}, \begin{bmatrix} 9 \\ 6 \end{bmatrix} \right\}$	b. Columns of	6	7	8	9	0	
$\begin{array}{c} \mathbf{a} \\ \mathbf{b} \\ \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \\ $	D. Oblamma of						
		_ 4	3	2	1	8	

Characterization of Linearly Dependent Sets

EXAMPLE Consider the set of vectors $\{v_1, v_2, v_3, v_4\}$ in \mathbb{R}^3 in the following diagram. Is the set linearly dependent? Explain



Theorem 7

An indexed set $S = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_p\}$ of two or more vectors is linearly dependent if and only if at least one of the vectors in *S* is a linear combination of the others. In fact, if *S* is linearly dependent, and $\mathbf{v}_1 \neq \mathbf{0}$, then some vector \mathbf{v}_j ($j \ge 2$) is a linear combination of the preceding vectors $\mathbf{v}_1, ..., \mathbf{v}_{j-1}$.