MATH 215

Practice Section 2.1

Given the matrices below $A=\left[\begin{array}{rr}4 & -2 \\ -3 & 0 \\ 3 & 5\end{array}\right] \quad B=\left[\begin{array}{rr}1 & 3 \\ 2 & -1\end{array}\right]$

1. Compute the product $A B$ in two ways:
(a) by the definition $A b_{1}$ and $A b_{2}$
(b) the row-column rule.
2. Compute $(A B)^{T}, A^{T}, B^{T}, A^{T} B^{T}$ and $B^{T} A^{T}$.
3. Let $u=\left[\begin{array}{r}3 \\ -2 \\ 1\end{array}\right]$ and $v=\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]$. Compute $u^{T} u, u u^{T}, u^{T} v, v^{T} u, v u^{T}$, and $u v^{T}$.
4. Let $u=\left[\begin{array}{r}-2 \\ 1\end{array}\right]$. Compute $P=I-2 u u^{T} /\left(u^{T} u\right)$ where I is the 2×2 identity matrix. What does $P^{2}=$?

After finding P^{2} for the specific example, try to show this result in general. i.e. what does $P^{2}=$? for any vector u in R^{n}.

