MATH 215

Practice Exam 3 (4.1, 4.2, 4.3, 4.4, 4.5, 5.1, 5.2, 5.3

1. Let $S=\{(a-b, b-a) \mid a$ and b are real numbers $\}$ be a subset of R^{2}. Show that S is a subspace of R^{2}. Find the dimension of S.
2. Let $H=\left\{\left(\begin{array}{l}a \\ b \\ c\end{array}\right): 3 a-2 b=5 c\right\}$. Show H is a subspace of $\mathbf{R}^{\mathbf{3}}$ and find the dimension of H
3. Assume that $A=\left[a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right]$ and $B=\left[b_{1}, b_{2}, b_{3}, b_{4}, b_{5}\right]$ are row equivalent (i.e. $B=\operatorname{rref}(A)$), where

$$
A=\left(\begin{array}{rrrrr}
1 & 2 & -2 & 0 & 7 \\
-2 & -3 & 1 & -1 & -5 \\
-3 & -4 & 0 & -2 & -3 \\
3 & 6 & -6 & 5 & 1
\end{array}\right), B=\left(\begin{array}{rrrrr}
1 & 0 & 4 & 0 & -3 \\
0 & 1 & -3 & 0 & 5 \\
0 & 0 & 0 & 1 & -4 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

(a) Find a basis for the column space of A.
(b) Find a basis for the row space of A.
(c) Find a basis for the null space of A.
(d) Find the $\operatorname{dim}(\operatorname{Nul}(A))$ and $\operatorname{dim}(\operatorname{Col}(A))$.
4. Find the eigenvalues for all matrices and eigenvectors for matrix A. Determine which matrices are diagonalizable.

$$
A=\left[\begin{array}{cc}
3 & 2 \\
3 & -2
\end{array}\right]
$$

$$
B=\left[\begin{array}{ccc}
-1 & 1 & 0 \\
1 & 2 & 1 \\
0 & 3 & -1
\end{array}\right]
$$

$C=\left[\begin{array}{lll}1 & 6 & 0 \\ 0 & 2 & 1 \\ 0 & 1 & 2\end{array}\right]$

$$
D=\left[\begin{array}{ccc}
4 & 0 & -2 \\
2 & 5 & 4 \\
0 & 0 & 5
\end{array}\right]
$$

