Maple Project 3 MTH 141

The purpose of this homework is to use Maple to better understand Riemann sums and integration.

Consider the function

$$
f(x)=1.5+\frac{x \sin x}{4}, \quad 0 \leq x \leq \pi
$$

Use Maple to answer the following questions. See page 2 for instructions and Maple hints.

PART 1.

1.1 Produce a plot of left endpoint rectangles for $0 \leq x \leq 4$ and a plot of right endpoint rectangles. Use $n=9$ subintervals.
1.2 Have Maple calculate a Left-Sum of $f(x)$ and Right-Sum of $f(x)$ on $0 \leq x \leq \pi$ with $n=9$ subintervals, first in symbolic (Σ) form, then as a decimal approximation.
1.3 By looking at the plots say whether the left Riemann sum Left(n) for general n gives a lower estimate, upper estimate or neither to $\int_{0}^{\pi} f(x) d x$, and explain why.

PART 2

2.1 Compute a decimal approximation to $A=\int_{0}^{\pi} f(x) d x$ by using Maple's int command or the palette symbol $\int_{a}^{b} f d x$.
2.2 Define the error as a Maple function of n as follows, where $\operatorname{Left}(n)$ means the left Riemann sum of $f(x)$ with n subdivisions on $0 \leq x \leq \pi$:

$$
\operatorname{lefterror}(n)=A-\operatorname{Left}(n)
$$

Note that n represents an integer. (hint: lefterror $(1)=0.785398163$. Use this information to check your lefterror(n) function.)
2.3 Create a list of pairs [[1,lefterror(1)],..., [20,lefterror[20]]], and use it to produce a plot of the lefterror (vertical axis) vs. n (horizontal axis), for $0 \leq n \leq 20, n \in N$. Specify a vertical range $-0.1 \leq y \leq 0.1$. Comment on whether the plot suggests that the left sum gives an overestimate or an underestimate for most n values, and say why.
2.4 Experiment with various n values to get the smallest n for which the error falls between -0.001 and 0.001.

INSTRUCTIONS and additional information

- Maple homework should have only one author. You may discuss the project with your classmates, but what you turn in should contain your own answers. Plagiarism is a serious offense.
- Write your name, class and section at the top of the worksheet.
- Precede Maple commands with a comment on what is being done. Neatness and good English will be taken into account.
- Maple should be used in all calculations and plots. The first Maple input line should be restart; with(plots): with(student):
This loads special functions needed for this project.
- MAPLE HELP is available in Lippitt 205, see http://www.math.uri.edu/Info/tutoring/

SOME USEFUL MAPLE COMMANDS

```
> restart; # good to have this at the top of worksheet;
> with(student): # add this at the top of your worksheet.
    # in particular, defines commands like leftbox and leftsum.
> with(plots): # adds functionality for plotting.
> f:= x -> x^2; # define a function f(x)
> D(f)(x); # derivative of f at x
> plot(f(x),x=-1..1,y=0..2); # plot f(x)
> fsolve(f(x)=0,x=2..3); # find a solution to f(x)=0 between 2 and 3.
> Pi; # the constant 3.1415...Note the it begins with capital P.
> leftbox(f(x),x=a..b,n); # produces a plot of left Riemann sum with n rectangles.
> rightbox(f(x),x=a..b,n); # produces a plot of right Riemann sum with n rectangles.
> leftsum(f(x),x=a..b,n);# left Riemann sum of f(x) with n subintervals on a<x<b.
> rightsum(f(x),x=a..b,n);# right Riemann sum of f(x) with n subintervals on a<x<b.
> evalf(%); # evaluate previous output in decimal form.
> int(f(x),x=a..b); # integral of f(x) from a to b.
> mypoints:=evalf([seq([n,g(n)],n=1..10)]); # a list of pairs, named ''mypoints''.
> plot(mypoints,n=0..10,y=0..3); # plot ''mypoints'' on the given window.
```

