NOTE

EDGE-COLORING CLIQUES WITH THREE COLORS ON ALL 4-CLIQUEs

DHRUV MUBAYI

Received March 18, 1998

A coloring of the edges of K_n is constructed such that every copy of K_4 has at least three colors on its edges. As $n \to \infty$, the number of colors used is $O(\sqrt{\log n})$. This improves upon the previous probabilistic bound of $O(\sqrt{n})$ due to Erdős and Gyárfás.

1. The Problem

The classical Ramsey problem asks for the minimum n such that every k-coloring of the edges of K_n yields a monochromatic K_k. For each n below this threshold, there is a k-coloring such that every p-clique receives at least 2 colors. Since the thresholds are unknown, we may study the problem by fixing n and asking for the minimum k such that $E(K_n)$ can be k-colored with each p-clique receiving at least 2 colors. This generalizes naturally as follows.

Definition. For integers n, p, q, a (p, q)-coloring of K_n is a coloring of the edges of K_n in which the edges of every p-clique together receive at least q colors. Let $f(n, p, q)$ denote the minimum number of colors in a (p, q)-coloring of K_n.

The function $f(n, p, q)$ was first studied by Elekes, Erdős and Füredi (as described in Section 9 of [1]). Erdős and Gyárfás [2] later improved the results, using the Local Lemma to prove an upper bound of $O(n^{c_{p,q}})$, where $c_{p,q} = \frac{p-2}{(\frac{p}{q})^{q-1}}$. In addition they determined, for each p, the smallest q such that $f(n, p, q)$ is linear in n, and the smallest q such that $f(n, p, q)$ is quadratic in n. Many small cases remain unresolved, most notably the determination of $f(n, 4, 3)$. Indeed, the Local Lemma shows only that $f(n, 4, 3) = O(\sqrt{n})$, but it remains open even whether $f(n, 4, 3)/\log n \to \infty$.

Mathematics Subject Classification (1991): 05C35, 05C55, 05D10
In this note we show that the optimal \((4,3)\)-coloring of \(K_n\) uses many fewer colors than the random \((4,3)\)-coloring. We do this by explicitly constructing a \((4,3)\) coloring of \(K_n\). Our main theorem is the following:

Theorem. \(f(n,4,3) < e^\sqrt{c \log n} (1+o(1))\), where \(c = 4 \log 2\).

2. The Coloring

In this section we describe the coloring of \(E(K_n)\).

We write \([n]\) for \(\{1,2,...,n\}\). The symmetric difference of sets \(A\) and \(B\) is \(A \triangle B = (A-B) \cup (B-A)\). For integers \(t < m\), let \(\binom{[m]}{t}\) denote the family of all \(t\)-subsets of \([m]\).

Let \(G\) be the complete graph on \(\binom{n}{m}\) vertices. Let \(V(G) = \binom{[m]}{t}\), and for each \(t\)-set \(T\) of \([m]\), rank the \(2^t - 1\) proper subsets of \(T\) according to some linear order. Color the edge \(AB\) with the two dimensional vector

\[c(AB) = (c_0(AB), c_1(AB)) \]

where

\[c_0(AB) = \min\{i : i \in A \triangle B\}. \]

Set

\[S = \begin{cases} A & \text{if} \ c_0(AB) \in A \\ B & \text{if} \ c_0(AB) \in B. \end{cases} \]

Let \(c_1(AB)\) be the rank of \(A \cap B\) in the linear order associated with the proper subsets of \(S\).

In this construction, the number of colors used is at most \((2 - \sqrt{\log m} - 1)\).

Remark. This construction is valid even if we let the vertex set consist of all subsets of \([m]\) of size at most \(t\), but the gain in the number of vertices is asymptotically negligible.

3. The Proof

We now check that our coloring is a \((4,3)\) coloring of \(K_n\). First observe that there are no monochromatic triangles. Indeed, if \(ABC\) is one such triangle, and \(c_0(AB) = i \in A\), then, since \(c(AB) = c(BC)\) implies that \(c_0(AB) = c_0(BC)\), we have \(i \in C\). But now \(i \notin A \triangle C\), so \(c(A \triangle C) \neq c(AB)\).

Since monochromatic triangles are forbidden, the only types of 2-colored \(K_4\)'s that can occur are those in Figure 1.

Type 1. Here one color class is the path \(ABCD\), while the other is the path \(BDAC\). Suppose \(c_0(AB) = i\).
Case 1. \(i \in A \). Then \(i \in C \) and \(i \notin B, D \). Moreover,
\[
A \cap [i - 1] = B \cap [i - 1] = C \cap [i - 1] = D \cap [i - 1]
\]
because \(i \) is the smallest element in \(A \Delta B \) and \(c(AB) = c(BC) = c(CD) \). This implies that \(c_0(AC) > i = c_0(AD) \). Thus \(c(AC) \neq c(AD) \).

Case 2. \(i \in B \). Then \(i \notin A \), \(i \notin B, D \). Reversing the labels on the path \(ABCD \) now puts us back in Case 1.

Type 2. Here one color class is the 4-cycle \(ABCD \), while the other contains the edges \(AC \) and \(BD \). By symmetry we may assume that \(c_0(AB) \in A - B \); and hence also \(c_0(AB) \in C - D \). Thus \(c_0(AD) = c_0(AB) \in (A \cap C) - (B \cup D) \), which implies that
1) \(c_1(AB) \) is the rank of \(A \cap B \) in \(A \), and
2) \(c_1(AD) \) is the rank of \(A \cap D \) in \(A \).

Since the rank of a subset in a set identifies the subset, we have \(A \cap B = A \cap D \).

Interchanging the roles of \(A \) and \(C \), we obtain \(C \cap B = C \cap D \).

Because \(c(AC) = c(BD) \), we may assume that \(c_0(AC) = c_0(BD) = i \). Thus either \(i \in (A \cap B) - (C \cup D) \), or \(i \in (A \cap D) - (C \cup B) \), or \(i \in (C \cap B) - (A \cup D) \), or \(i \in (C \cap D) - (A \cup B) \). Each of these four cases contradicts either \(A \cap B = A \cap D \) or \(C \cap B = C \cap D \).

Proof of Theorem. Set \(t = \lfloor \sqrt{\log n} / \sqrt{\log 2} \rfloor \) and choose \(m \) such that \(t^m \leq n \leq t^{m+1} \). Since \(f \) is a nondecreasing function of \(n \) and \((m/t)^t < (m/t)^t \) for \(t < m \), we have
\[
f(n, 4, 3) \leq f \left(\left(\frac{m + 1}{t} \right), 4, 3 \right) \leq (2^t - 1)m < 2^t n^{1/t} = (1 + o(1)) e^{\sqrt{\log 2 \log n + \frac{\log \log n - \log \log 2}{2}}} = e^{\sqrt{2 \log 2 \log n} (1 + o(1))}.
\]

Acknowledgements. The author thanks András Gyárfás for directing his attention to [2] and providing a copy of it, Gergely Harcos for simplifying the original construction, and Douglas B. West for improving the presentation of this paper.
References

Dhruv Mubayi

School of Mathematics
Georgia Institute of Technology
Atlanta, Georgia 30332-0160
mubayi@math.gatech.edu