Small Ramsey Numbers

Stanislaw P. Radziszowski
Department of Computer Science
Rochester Institute of Technology
Rochester, NY 14623, spr@cs.rit.edu
http://www.cs.rit.edu/~spr

Submitted: June 11, 1994; Accepted: July 3, 1994
Revision #11: August 1, 2006

ABSTRACT: We present data which, to the best of our knowledge, includes all known nontrivial values and bounds for specific graph, hypergraph and multicolor Ramsey numbers, where the avoided graphs are complete or complete without one edge. Many results pertaining to other more studied cases are also presented. We give references to all cited bounds and values, as well as to previous similar compilations. We do not attempt complete coverage of asymptotic behavior of Ramsey numbers, but concentrate on their specific values.

Mathematical Reviews Subject Number 05C55.

Revisions

1993, February preliminary version, RIT-TR-93-009 [Ra2]
1994, July 3 accepted to the EJC, posted on the web
1994, November 7 EJC revision #1
1995, August 28 EJC revision #2
1996, March 25 EJC revision #3
1997, July 11 EJC revision #4
1998, July 9 EJC revision #5
1999, July 5 EJC revision #6
2000, July 25 EJC revision #7
2001, July 12 EJC revision #8
2002, July 15 EJC revision #9
2004, July 4 EJC revision #10
2006, August 1 EJC revision #11
Table V. Known Ramsey numbers $R(C_n, K_m)$, results from unpublished manuscripts are marked with a *.
The Ramsey number for a cycle of length five vs. a complete graph of order six

Chula J. Jayawardene ¹, Cecil C. Rousseau ²*

¹Department of Mathematics, University of Colombo, Colombo, Sri Lanka
²Department of Mathematical Sciences, The University of Memphis, Memphis, Tennessee 38152
*Correspondence to Cecil C. Rousseau, Department of Mathematical Sciences, 373 Dunn Hall, The University of Memphis, Memphis, TN 38152-3240

Keywords
Ramsey numbers; cycles

Abstract
It has been conjectured that \(r(C_m, K_n) = (m - 1)(n - 1) + 1 \) for all \(m \geq n \geq 4 \). This has been proved recently for \(n = 4 \) and \(n = 5 \). In this paper, we prove that \(r(C_5, K_6) = 21 \). This raises the possibility that \(r(C_m, K_6) = 5m - 4 \) for all \(m \geq 5 \). © 2000 John Wiley & Sons, Inc. J Graph Theory 35: 99-108, 2000

Received: 18 January 1998

Digital Object Identifier (DOI)
10.1002/1097-0118(200001)35:2<99::AID-JGT4>3.0.CO;2-6 About DOI

Related Articles
- Find other articles like this in Wiley InterScience
- Find articles in Wiley InterScience written by any of the authors

Wiley InterScience is a member of CrossRef.
On cycle - Complete graph ramsey numbers

P. Erdős ¹, R. J. Faudree ², C. C. Rousseau ², R. H. Schelp ²

¹Hungarian Academy of Sciences
²Memphis State University

ABSTRACT

A new upper bound is given for the cycle-complete graph Ramsey number \(r(C_m, K_n) \), the smallest order for a graph which forces it to contain either a cycle of order \(m \) or a set of \(n \) independent vertices. Then, another cycle-complete graph Ramsey number is studied, namely \(r(\leq C_m, K_n) \) the smallest order for a graph which forces it to contain either a cycle of order \(i \) for some \(i \) satisfying \(3 \leq i \leq m \) or a set of \(n \) independent vertices. We obtain the exact value of \(r(\leq C_m, K_n) \) for all \(m > n \) and an upper bound which applies when \(m \) is large in comparison with \(n \).

DIGITAL OBJECT IDENTIFIER (DOI)

10.1002/jgt.3190020107 About DOI

Related Articles

• Find other articles like this in Wiley InterScience
• Find articles in Wiley InterScience written by any of the authors

Wiley InterScience is a member of CrossRef.