Application - Hospitals
Queens on board - puzzle
Minimal dominating set. $S \subseteq V(G)$, every vertex not in S has a neighbor in S.
Minimum dominating set, $\gamma(G)$
Independent set:
Independence number, $\alpha(G)$
Theorem: $\gamma(G) \leq \alpha(G)$
Vertex Cover. $Q \subseteq V(G)$, contains at least one endpoint of every edge.
Vertex covering number, $\beta(G)$.
Size of a maximum matching $\alpha'(G)$.
Theorem 28. $S \subseteq V(G)$ is an independent set if and only if \tilde{S} is a vertex cover. Hence, $\alpha(G) + \beta(G) = |V(G)|$.

Proof. Let S be an independent set. Then every edge is incident to at least one vertex of (S). Conversely, if \tilde{S} covers all edges, there are not edges among pairs of vertices in S. Hence every maximum independent set is the complement of a minimum vertex cover. □

Theorem 29. (Konig; Egevary) If G is a bipartite graph, then $\alpha'(G) = \beta(G)$.

Proof. Let $V(G) = X \cup Y$ where X and Y are the partite sets. Let Q be a vertex cover and M any matching. It must be that $|Q| \geq |M|$, since distinct vertices are needed to cover the edges of M. Hence we can conclude that $\alpha'(G) \geq \beta(G)$.

Let Q be a smallest vertex cover. We construct a matching of size $|Q|$, thus proving that $\beta(G) \geq \alpha'(G)$.

Let $R = Q \cap X$ and $T = Q \cap Y$. Let H be the subgraph of G induced on $R \cup (Y - T)$ and H' be the subgraph of G induced on $T \cup (X - R)$.

We will use Hall’s Theorem to show that H has a matching that saturates R and H' has a matching that saturates T. As H and H' are disjoint, the two matchings together give a matching with $|Q|$ edges.

Since $R \cup T$ is a vertex cover, G has no edge between $Y - T$ and $X - R$. For each $S \subseteq R$, we consider $N_H(S)$. If $|N_H(S)| < |S|$, we could substitute $N_H(S)$ for S in Q (since $N_H(S)$ covers all edges incident to S that are not covered by T) and have a smaller vertex cover of G. But that contradicts that Q is a smallest vertex cover of G. Thus Hall’s condition is satisfied in H and there is a matching with $|R|$ edges.

Similarly there is a matching with $|T|$ edges in H'. □