Lesson 8 - Matchings

Color classes of edges in a proper edge coloring form matchings.

Matchings

Perfect matchings

Thm: \(\chi(K_n) = n \) if \(n \) is odd. \(\chi(K_n) = n - 1 \) if \(n \) is even.

Matchings in bipartite graphs.

Hall’s condition.

Hall’s marriage theorem

Applications of Hall’s Theorem

System of distinct representatives

Applications: In bipartite, job and applicants

Applications: In general graph: class trips, vertices = kids, edges=friends, pair up so friends sit together on bus
Theorem 24. \(\chi(K_n) = n \) if \(n \) is odd. \(\chi(K_n) = n - 1 \) if \(n \) is even.

Definition 5. A matching in an undirected graph \(G \) is a set of pairwise disjoint edges. The vertices belonging to the edges in the matching are called \textbf{saturated}. Others are \textbf{unsaturated}. A \textbf{perfect matching} or \textbf{complete matching} is a matching that saturates every vertex of \(G \). A \textbf{maximum matching} is one that has the most edges of all matchings in \(G \). A \textbf{maximal matching} may not be a maximum matching, but it cannot be extended.

Definition 6. Given a matching \(M \), an \textbf{M-alternating path} is a path that alternates between edges in \(M \) and edges not in \(M \). An \textbf{M-alternating path} \(P \) that begins and ends with \(M \)-unsaturated vertices is an \textbf{M-augmenting path}.

Proposition 1. Replacing \(M \cap E(P) \) by \(E(P) - M \) produces a new matching \(M' \) with one more edge than \(M \).

Example 1. See Figure 1. Let \(M \) be the matching \(\{1C, 3D, 4E\} \) and \(P \) the \(M \)-augmenting path \(P : A, 1, C, 4, E, 5 \). Then \(M \cap E(P) = \{1C, 4E\} \) and \(E(P) - M = \{1A, 4C, 5E\} \). We get \(M' = (M - E(P)) \cup (E(P) - M) = \{3D, 1A, 4C, 5E\} \).

Definition 7. If \(G \) and \(H \) are two graphs on the same vertex set \(V \), then the \textbf{symmetric difference} \(G \triangle H \) is the
graph with vertex set V whose edges are all edges appearing in exactly one of G and H. This is also used for sets of edges: If M and M' are 2 matchings then $M \triangle M' = (M \cup M') - (M \cap M')$.

Lemma 24.1. A matching M in a graph G is maximum if and only if G has no M-augmenting path.

Proof: (\Rightarrow) Suppose G has an M-augmenting path, P. Then $M' = (M - E(P)) \cup (E(P) - M)$ is a larger matching than M.

(\Leftarrow) Suppose there is a matching M' in G larger than M. Let F be the subgraph of G on $V(G)$ with edges $E(F) = M \triangle M'$. Clearly, $\Delta(F) \leq 2$. So F consists of disjoint paths and cycles. Furthermore, every path or cycle in F alternates between edges in M and M'. So each cycle in F must be even length. But $|M'| > |M|$. So there is a component which is a path that begins and ends with an edge of M'. This is an M-augmenting path. \square

Theorem 25. P. Hall. Let G be a bipartite graph with partite sets A and B, $|A| \leq |B|$. Then $\forall X \subseteq A, |N(X)| \geq |X|$ if and only if there exits a matching of A into B. (A is saturated.)

Proof: \Leftarrow The necessity is clear.

\Rightarrow For the sufficiency, we suppose $|N(S)| \geq |S|$ for all $S \subseteq A$ and consider a maximum matching M. By the Lemma 24.1, there is no M-augmenting path. Suppose M does not saturate A. Let $u \in A$ be an unsaturated vertex. We know that u has no neighbors that are not incident to edges of M or else M would not be maximal. Let $S \subseteq A$ be vertices reachable by an M-alternating path starting at u and $T \subseteq B$ be vertices reachable from u by an M-alternating path. All the paths end in S since there are no M-augmenting
paths. Thus, if \(s \in S - u \), it has no neighbors outside of \(T \), so \(N(S - u) \subseteq T \). But since every vertex of \(T \) has a matching edge in \(S - u \), we see that \(|T| \leq |S - u| \).

We see that for \(X = S \), \(|N(S)| \leq |T| \leq |S - u| \), so \(|S| = |S - u| + 1 > |N(S)| \), which is a contradiction. \(\square \)

Exercise 2. If \(G \) is a bipartite graph with \(\Delta(G) = k \), show that \(G \) is the subgraph of a \(k \)-regular bipartite graph.

Theorem 26. If \(G \) is a \(k \)-regular bipartite graph then it is in class 1.

Proof: In this case to prove that \(G \) is in class 1 is to show that the edges are \(k \) colorable.

Suppose \(G \) has partite sets \(A \) and \(B \). Since \(G \) is \(k \)-regular, we know that \(|A| = |B| \).

The proof is by induction on \(k \).

If \(k = 1 \), there is a perfect matching and it contains all the edges of \(G \). Thus the edges can be colored with 1 color.

We will show that Hall’s condition is satisfied. Let \(X \subseteq A \). We notice that \(E(X, N(X)) \subseteq E(N(X), A) \). So,

\[
 k|N(X)| = |E(N(X), A)| \\
 \geq |E(X, N(X))| \\
 = k|X| \\
 |N(X)| \geq |X|
\]

Thus \(G \) has a perfect matching. We consider these edges to be colored with color \(c_k \).

We remove these edges, thus obtaining a \(k - 1 \)-regular bipartite graph. By induction, the edges are colorable with \(k - 1 \) colors. Thus obtaining a \(k \) coloring of \(G \).

Theorem 27. If \(G \) is bipartite then it is in class 1.