Lesson 6 - Planar Graphs

Planar graph
plane drawing - plane graph
face
length of a face
infinite face

Thm 12: Euler. Let G be a plane drawing of a connected planar graph. With n, m, f, denote respectively the number of vertices, edges and faces. Then $n - m + f = 2$.
Cor 12.1: k components $n - m + f = k + 1$
Cor 12.2: $m \leq 3n - 6$
Cor 12.3: $m \leq 2n - 4$ (triangle free)

Thm 13: $K_{3,3}$ and K_5 are non-planar.

Thm 14: Any graph containing a non-planar subgraph is non-planar.

homeomorphic - subdivison,

Thm 15: Any graph homeomorphic to a non-planar graph is non-planar.

Thm 16: Any graph homeomorphic to either $K_{3,3}$ or K_5 is non-planar.

Thm 17: Any graph containing a subgraph homeomorphic to either $K_{3,3}$ or K_5 is non-planar.

Thm 18: (Kuratowski) A graph is planar if and only if it contains no subgraph homeomorphic to $K_{3,3}$ or K_5.

Thm 19: Every planar graph contains a vertex of degree at most 5

Thm 20: 5 - color theorem
Crossing number $cr(G)$
Printed circuits
Thickness $t(G)$
Complexity question: Decide if G is planar.
Theorem 12. Euler. Let G be a plane drawing of a connected planar graph. With n, m, f, denote respectively the number of vertices, edges and faces. Then $n - m + f = 2$.

Proof: The proof is by induction on the number of edges. The base case is when there are no edges. Then since G is connected, it is the trivial graph with $n = 1$, $m = 0$, and $f = 1$. We see that $n - m + f = 1 - 0 + 1 = 2$. Let $m > 1$. We assume that a connected plane graph that has m' edges with $m > m' \geq 1$, n' vertices and f' faces then $n' - m' + f' = 2$.

Now take a connected plane graph G on m edges, n vertices, and f faces. If G is a tree then we know that $m = n - 1$ and $f = 1$. In this case we have: $n - m + f = n - (n - 1) + 1 = 1 + 1 = 2$. If G is not a tree, not every edge is a cut edge. If uv is not a cut edge then uv has is bordered by two different faces, and $G - uv$ is connected with 1 less face than G. Then $G - uv$ satisfies the induction hypothesis and we have that $n - (m - 1) + f - 1 = 2$ which implies that $n - m + f = 2$. □

Corollary 12.1. Let G be a plane drawing of a planar graph that has k components, n vertices, m edges, and f faces. Then $n - m + f = k + 1$.

Proof: Suppose G has k components. For each $i \in [k]$ suppose component C_i has n_i vertices, m_i edges, and f_i faces. Each one is connected, and so by Euler’s Formula. For all $i \in [k]$, $n_i - m_i + f_i = 2$. Adding the k equations we get: $n_1 + \cdots + n_k - (m_1 + \cdots + m_k) + (f_1 + \cdots + f_k) = 2k$. Substituting $n_1 + \cdots + n_k = n$, $m_1 + \cdots + m_k = m$ and $f_1 + \cdots + f_k = f + k - 1$, gives $n - m + f + k - 1 = 2k$. Which of course implies, $n - m + f = 2k - k + 1 = k + 1$. □

Definition 2. The length of a face in a plane graph G is the total length of the closed walk(s) in G bounding the face.
Note that a cut edge is bordered on both sides by the same face and contributes 2 times to the length of the face.

Corollary 12.2. If G is a planar graph with n vertices and m edges then $m \leq 3n - 6$. Moreover, if G is maximal planar then, $m = 3n - 6$.

Proof: Embed G in the plane. First assume that G is maximal planar. Then G is connected and every face must be bordered by 3 edges. That is the length of each face, F, $\ell(F)$ is 3. We have that $\sum_{i=1}^{f} \ell(F_i) = 2m$ and on the other hand, $\sum_{i=1}^{f} \ell(F_i) = 3f$. By Euler’s Formula we may substitute $f = m - n + 2$. Thus, $2m = 3(m - n + 2)$, so that $m = 3n - 6$. If G is not maximal planar, we can add edges to G to obtain G' which is maximal planar and has m' edges. Then $m < m' = 3n - 6$. \square

Corollary 12.3. If G is a planar graph with n vertices, m edges, and no 3-cycles then $m \leq 2n - 4$.

Proof: The argument is similar to that of the last corollary. Except, in this case, we have that the length of each face is at least 4. Thus obtaining $4f \leq 2m$ and after substituting $f = m - n + 2$, we get $4(m - n + 2) \leq 2m$. So that $m \leq 2n - 4$. \square

Theorem 13. $K_{3,3}$ and K_5 are non-planar.

Proof: Suppose $K_{3,3}$ is planar. By Corollary 12.3, for $n = 6$ and $m = 9$, $9 \leq 2(6) - 4 = 8$. But this is a contradiction, so $K_{3,3}$ cannot be planar.

Suppose K_5 is planar. By Corollary 12.2, for $n = 5$ and $m = 10$, $10 \leq 3(5) - 6 = 9$. But this is a contradiction, so K_5 cannot be planar. \square

Theorem 14. Any graph containing a non-planar subgraph is non-planar.
Proof: The proof should be clear.

Theorem 15. Any graph homeomorphic to a non-planar graph is non-planar.

Proof: The proof should be clear.

Theorem 16. Any graph homeomorphic to either $K_{3,3}$ or K_5 is non-planar.

Proof: This is due to Theorem 13 and Theorem 15.

Theorem 17. Any graph containing a subgraph homeomorphic to either $K_{3,3}$ or K_5 is non-planar.

Proof: This is due to Theorem 16 and Theorem 14.

Theorem 18. Kuratowski. A graph is planar if and only if it contains no subgraph homeomorphic to $K_{3,3}$ or K_5.

Theorem 17 gives the sufficiency, (\Rightarrow). For the necessity, (\Leftarrow), we must first prove a number of lemmas.

Definition 3. A graph is 2-connected if there are no cut vertices. A subgraph of a graph G is called a block if it is a maximal 2-connected subgraph. If a graph is 2-connected then it might be called a block.

The meaning of “maximal” in the above definition is this. If B is a block of G and H is a 2-connected subgraph of G containing B, then $B = H$. A block of G may contain vertices which are cut-vertices of G but will not be cut vertices in the block. A graph G with at least one cut vertex has more than one block. We notice that the blocks form a sort of tree structure and so there are blocks which behave like leaves in a tree and there will be at least 2 of them.

The next lemma says something about cycles in blocks.
Lemma 18.1. A graph G of order $p \geq 3$ is a block if and only if every two vertices of G lie on a common cycle of G.

Proof: Suppose every 2 vertices of G lie on a common cycle. Then, no vertex could be a cut vertex. For, suppose v is a cut vertex, then $\exists u, w$ such that v is on every u, w-path. But then there is no cycle containing both u and w. Since G has no cut vertex, it is a block.

Now suppose G is a block and for the sake of contradiction, suppose for vertex u there is some vertex, not on a cycle with u. Let U be the set containing u and all vertices that are on common cycles with u. Since $G - u$ is still connected, every pair of vertices in $N(u)$ are connected by a path in $G - u$. Therefore, $N(u) \subseteq U$.

We are assuming $V - U$ is nonempty. Let $v \in V - U$. Consider a u, v-path $W : u = u_0, u_1, \ldots u_n = v$. Let i be the smallest integer $2 \leq i \leq n$ such that $u_i \notin U$. Then there exists a cycle C containing u and u_{i-1}.

Because u_{i-1} is not a cut vertex, there exists a u_i, u-path $P : u_i = v_0, v_1, v_2, \ldots v_m = u$ not containing u_{i-1}. The only vertex common to both P and C cannot be u because if so then following C from u to u_{i-1} then along edge $u_{i-1}u_i$ to u_i followed by P back to u is a cycle containing u.
Let j be the smallest integer $1 \leq j \leq m - 1$ such that v_j is on C. Now we have a cycle containing both u and u_i, contradicting that $V - U$ is nonempty. Here is the cycle. Follow P from u_i to v_j, C toward u, through u back to u_{i-1}, then use the edge $u_{i-1}u_i$ back to u_i. □

Lemma 18.2. Let G be a connected graph with one or more cut-vertices. Then among the blocks of G, there are at least two, each of which has exactly one cut vertex of G.

Proof: Form the following bipartite graph H with bi-partitions A and B. In A, include all the cut vertices of G and in B, include a vertex B_i for each block B_i of G. We include an edge b_i to B_j in H whenever $b_i \in B_j$.

Claim: H is a tree.

Suppose there is a cycle in H. Then it is of the form, $a_1, B_1, a_2, B_2, \ldots, B_k, a_1$ and corresponds to a cycle in G within blocks B_1, \ldots, B_k. But then the previous theorem, $B_1 \cup B_1 \cup \cdots \cup B_k$ is a block of G. So for each i, B_i is not maximally 2-connected in G. Thus, H has no cycles. Clearly, H is connected since G is connected. Since H is a tree, there are at least 2 end vertices, which are blocks in G that contain exactly one cut vertex. □

Definition 4. A block containing one cut vertex is called an end-block.

Before we state the next lemma, we give a definition.

Definition 5. A block G is called a critical block if $\forall v$, $G - v$ is not a block.

Lemma 18.3. If G is a critical block of order $p \geq 4$, then G contains a vertex of degree 2.

Proof: Clearly no vertex in a block G is of degree 1. For each vertex x of G, there exists another vertex y of $G - x$ such
that $G - x - y$ is disconnected. Note that each component of $G - x - y$ must contain some vertices adjacent to x and some adjacent to y. Otherwise we would have a cut vertex.

Among all such pairs x, y of vertices of G, let u, v be a pair such that $G - u - v$ contains a component G_1 of minimum order n. If $n = 1$ then that vertex in G_1 is of degree 2, since it must be adjacent to both u and v.

Assume $n \geq 2$. Let $H = \langle V(G_1) \cup \{u, v\} \rangle$, and $G_2 = G - V(H)$. Let $w_1 \in V(G_1)$. Let $w_2 \in G - w_1$ be such that $G - w_1 - w_2$ is disconnected. Consider the following cases.

Case 1. Suppose $w_2 \in V(H)$.

See Figure 2. Since we know that no vertices of G_2 are adjacent to w_1 and $< V(G_2) \cup \{u\} >$ and $< V(G_2) \cup \{v\} >$ are connected, some component of $G - w_1 - w_2$ is smaller than G_1. So this case cannot happen.

Case 2. Suppose $w_2 \in V(G_2)$.

See Figure 3. Each component of $G - w_1 - w_2$ contains some vertices of H and some vertices of G_2 due to the fact that each component must have vertices adjacent to each of w_1 and w_2. Since $G - u - v$ has the component $H - u - v$ and G_2 is the union of the remaining components, at least one of the vertices
Figure 3. $w_2 \in V(G_2)$

u and v are on every path between vertices in $H - u - v$ and G_2. Thus if u and v were in the same component of $G - w_1 - w_2$, there would be some component of $G - w_1 - w_2$ without vertices adjacent to w_1 or without vertices adjacent to w_2.

So, $H - w_1$ must contain at least 2 components, one containing u, call it H_u and one containing v, call it H_v. If $H - w_1$ contains another component then again, that component would have no vertices adjacent to w_2.

If either H_u or H_v is trivial, then its only vertex would be of degree 2, adjacent to both w_1 and w_2. So assume H_u and H_v are nontrivial.

Now consider $G - w_1 - u$. This has a component contained in $H - w_1 - u$, namely $H_u - u$. We have $|H| = n + 2$, the sets $H_u, H_v, \{w_1\}$ form a partition of H, and $|H_v| \geq 2$. So $|H_u - u| \leq n - 1$. We again reach a contradiction to the way u and v were chosen. □

Lemma 18.4. A graph is planar if and only if each of its blocks is planar.

Proof: The graph G is planar if and only if each of its components is planar, so assume G is connected. Trivially, if G is planar then each block is planar. It remains to show that if each
block is planar then \(G \) is planar. This is proved by induction on \(k \), the number of blocks.
Suppose \(k = 1 \). Then \(G \) is planar.
Now suppose \(G \) is a graph with \(k \geq 2 \) blocks and suppose for all graphs \(H \) with \(k - 1 \) planar blocks, \(H \) is planar.
Let \(B \) be an end-block of \(G \) with cut vertex \(v \). Then \(H = G - (B - v) \) has \(k - 1 \) planar blocks and so is planar by the induction assumption. Take any region \(R \) of the planar embedding of \(H \) which has \(v \) on its border. Consider a planar embedding of \(B \) with \(v \) on its exterior region. Now, \(B \) can be embedded in \(R \) while identifying \(v \) in \(B \) with \(v \) in \(H \). \(\square \)

Lemma 18.5. If a block contains no subdivision of \(K_5 \) or \(K_{3,3} \), then it is planar.

Proof: Suppose it’s not true. Of all non-planar blocks that contain no subdivision of \(K_5 \) or \(K_{3,3} \), pick \(H \) of minimum size, number of edges.

Claim: \(\delta(H) \geq 3 \).
If \(\delta(H) = 1 \) then \(H \) is not a block. Suppose \(v \in V(H) \) such that \(\deg v = 2 \) with \(vu, vw \in E(H) \). Then we would have one of the following two cases.

Case 1. \(uw \in E(H) \).
In this case, \(H - v \) is still a block and still has no subdivision of \(K_5 \) or \(K_{3,3} \). But \(H - v \) is smaller in size than \(H \) and so must be planar because of the way we chose \(H \). Clearly if \(H - v \) can be embedded in the plane then so can \(H \).

Case 2. \(uw \notin E(H) \).
Again, in this case, \(H - v + uw \) is still a block and still has no subdivision of \(K_5 \) or \(K_{3,3} \). For, suppose \(H_1 \) is a subdivision of
K_5 or $K_{3,3}$ in $H - v + uw$. Then H would contain a subdivision of H_1. Thus again we see that there would be a planar embedding of H in this case as well.

This proves the claim. Now we know by Theorem 18.3 that H is not a critical block. Thus, there exists an edge $e = uv$ such that $H - e$ is still a block.

Set $H' = H - e$. H' is planar since H is of minimum size.

By Theorem 18.1, we know that H' contains a cycle containing both u and v. Among all planar embeddings of H', choose one that has a cycle C with the maximum number of interior regions. Let

$$C : u = v_0, v_1, \ldots, v_i = v, v_{i+1}, \ldots, v_n = u$$

where $1 < i < n - 1$.

Observation 1: H is non-planar so both interior and exterior subgraphs are nonempty. Otherwise we can add the edge uv.

Observation 2: No 2 vertices are connected by a path embedded in the exterior of C among

$$\{v_0, v_1, \ldots, v_i\}$$

or $$\{v_i, v_{i+1}, \ldots, v_n\}.$$ For, such a path cannot be embedded in the exterior region due to our choice of C having the most number of interior regions.

By these two observations, we see that there must exist a $v_j - v_k$ path P in the exterior with $0 < j < i < k < n$ that doesn’t intersect C anywhere else or have any other paths connecting P to C at vertices other than v_j or v_k. See Figure 4

Consider the subgraph $H' - (C - \{v_j, v_k\})$. Let H_1 be the component of this subgraph that contains the path P. By the choice of C, H_1 cannot be switched to the interior of C in a
plane manner. This fact and the fact the edge $e = uv$ cannot be inserted in a plane manner imply that the interior of the subgraph H' must contain one of the following:

1. A v_r, v_s-path, Q, $0 < r < j$, $i < s < k$, (or, equivalently, $j < r < i$ and $k < s < n$) none of whose vertices different from v_r and v_s belongs to C.

2. A vertex w not on C that is connected to C by three internally disjoint paths such that the end-vertex of one such path P' is one of v_0, v_j, v_i, and v_k. If P' ends at v_0, the end-vertices of the other paths are v_r and v_s with $j \leq r < i$ and $i < s \leq k$ but not both $r = j$ and $s = k$ hold. If P' ends at any of the other vertices, v_j, v_i or v_k, there are three analogous cases.

3. A vertex w not on C that is connected to C by three internally disjoint paths P_1, P_2, P_3 such that the end-vertices of the paths are three of the four vertices v_0, v_j, v_i, v_k. Say v_k is the missing one, and P_1 connects v_0 to w and P_2 connects v_i to w. Then there is also a vertex $x \neq v_0, w, v_i$ on one of the paths P_1 or P_2 and a path P_4 from x to...
v_k. The remaining choices of the missing vertex produce analogous results.

(4) A vertex w not on C that is connected to the vertices v_0, v_j, v_i, v_k by four internally disjoint paths.

Figure 5 depicts the four situations given above. First, convince yourself that these are the only possibilities. Then observe that when we include the edge $e = uv$, in the first three cases, a subdivision of $K_{3,3}$ can be found and in the fourth case a subdivision of K_5 exists. This is of course a contradiction and completes the proof. □

Proof of Theorem 18: Given that G contains no subgraph homeomorphic to either K_5 or $K_{3,3}$, we know that none of its
blocks contains one of these subgraphs. So all the blocks of G
are planar by Lemma 18.5. Then also G is planar by Lemma
18.4. □

Theorem 19. Every planar graph has a vertex of degree at
most 5.

Proof: If we suppose not, then $6n < \sum_{i=1}^{n} \deg(v_i) = 2m$. But
this contradicts Corollary 12.2.

Theorem 20. Every planar graph is 5-colorable.

Proof: The proof is by induction on the order, n, of the graph.
The base case is when $n = 1$ and the theorem is trivially true
for any graph on 1 vertex.
Now suppose $n > 1$ and any planar graph on fewer than n
vertices can by 5-colored.
Suppose G is a planar. If G has a vertex v of degree at most 4,
we can color $G - v$ by induction and then use a color not used
on $N(v)$ for v.
If not, then G has a vertex, v, of degree 5. We color $G - v$ by
induction and look at the colors used on $N(v)$ for v.
For $\{i, j\} \subset [5]$, let $H(i, j)$ be the subgraph of G induced on the
vertices that are colored with a color in $\{c_i, c_j\}$. If for some $i \neq$
j, the vertices v_i and v_j are in separate components of $H(i, j)$,
then we can pick the component containing v_i, exchange the
colors c_i and c_j in that component only. Now both v_i and v_j
are colored with color c_j so that c_i can be used for v.
We know that this has to happen for 2 of the colors since, if there is a path joining v_1 to v_3 in $H(1, 3)$ then there is no path joining v_2 to v_4 in $H(2, 4)$. □