List Coloring Graphs

January 29, 2004

CHROMATIC NUMBER

Defn 1 A k-coloring of a graph G is a function $c : V(G) \rightarrow \{1, 2, \ldots k\}$. A proper k-coloring of a graph G is a coloring of G with k colors so that no 2 distinct adjacent vertices are the same color.

The chromatic number of G, $\chi(G)$, is the smallest k such that a proper k-coloring of G exists.

LIST COLORINGS AND CHOICE NUMBER

Defn 2 A k-list assignment, L, is an assignment of sets (called lists) to the vertices

$$v \mapsto L(v)$$

such that

$$|L(v)| \geq k,$$

for all vertices v.

An L-list coloring is a coloring such that the color assigned to v is in $L(v)$ for all vertices v.

A proper L-list coloring is an L-list coloring which is proper.

If G is such that a proper L-list coloring exists for all possible k-list assignments L, we say that G is k choosable. The smallest k for which G is k choosable is the choice number of G, denoted $ch(G)$.
EXAMPLES OF LIST COLORING

FACTS ABOUT LIST COLORING

Theorem 1 For all graphs on n vertices,

$$\chi(G) \leq \text{ch}(G) \leq \chi(G) \ln(n)$$

First, we will show $\text{ch}(G) > \chi(G) - 1$. This gives the lower bound.
Set $k = \chi(G)$ and assign the list $\{1, 2, \ldots, k-1\}$ to all vertices.
This is an example of a $k-1$-list assignment L which cannot be properly colorable.
Thus $\text{ch}(G) > \chi(G) - 1$.

FACTS ABOUT LIST COLORING

Next, we show $\text{ch}(G) \leq \chi(G) \ln |V(G)|$.

A probabilistic argument.

Color G with $s = \chi(G)$ colors,

Color classes: C_1, C_2, \ldots, C_s

Suppose $k = \chi(G) \ln n$, where $n = |V(G)|$.

Assume G has a k-list assignment L.

The sample space is the set of all partitions of $\bigcup_{u \in V(G)} L(v)$ into at most s parts. A typical partition is $P: P_1, P_2, \ldots, P_s$ and

For $c \in \bigcup_{u \in V(G)} L(v)$, Prob $(c \in P_i) = \frac{1}{s}$

Want $\forall i \in [s], \forall v \in C_i, L(v) \cap P_i \neq \emptyset$.

Prob $(\exists i \in [s], \exists v \in C_i, L(v) \cap P_i = \emptyset)$

$\leq \sum_{v \in V(G)} \left(\frac{1}{s}\right)^k = n((1 - \frac{1}{s})^s)^\frac{k}{s} < ne^{-\frac{k}{s}}.$
We see that \(s \ln n = k \)

\[
\ln n = \frac{k}{s}
\]

\[
n = e^{\frac{k}{s}}
\]

\[
ne^{-\frac{k}{s}} = 1
\]

And so \(\text{Prob} (\exists i \in [s], \exists v \in C_i, L(v) \cap P_i = \emptyset) < ne^{-\frac{k}{s}} = 1 \)

Therefore, the probability

\[
\forall i \in [s], \forall v \in C_i, L(v) \cap P_i \neq \emptyset > 0.
\]

So there exists such a partition.

Planar Graphs

Defn 3 *A graph is planar if it can be drawn in the plane with no edge crossings.*

Defn 4 *A graph is bipartite if and only if its chromatic number is 2.*

Remember theorem: If \(G \) is planar and bipartite then \(m \leq 2n - 4 \) where \(m \) is the number of edges and \(n \) is the number of vertices.

Planar Graphs

Let go over some terms:
Defn 5 Face or region. Interior face. Exterior or unbounded face.

Defn 6 The length of a face. Total length of closed walk(s) in \(G \) bounding the face.

EXAMPLES

Defn 7 A connected plane embedding of a graph has a unique closed walk bounding the exterior region. We call that walk the outercircuit. (Note that for a closed walk, trail, or path, the starting point is irrelevant, so technically we could say a closed walk is an equivalence class of all closed walks following the same order of vertices and edges. Also, even though a circuit is a closed trail and we are talking about a closed walk here, we still call it the outercircuit.)

Defn 8 Outerplanar graph. All vertices are on the boundary of the exterior region. Note that the boundary is an outer circuit if the graph is connected.

Defn 9 Given a cycle \(C \) in a plane embedding of \(G \), \(C \) divides the plane into 2 regions, one containing the unbounded face. The exterior of \(C \), \(\text{ext}(C) \), is the maximum subgraph of \(G \) embedded in region containing the unbounded face. The interior of \(C \), \(\text{int}(C) \), is the maximum subgraph of \(G \) embedded in the other region. Neither ones contain any vertices of \(C \) itself.

Planar Graphs

If \(A \subset V(G) \), we use the notation \(< A >\) for the induced graph on the vertices in \(A \). If we want to indicate the induced graph on the vertices in the exterior of \(C \) together with the vertices of \(C \), we could write: \(< V(\text{ext}(C)) \cup V(C) >\).

Defn 10 A chord of a cycle is an edge whose endpoints are both in the cycle, but is not itself a cycle edge. (This can be applied to any cycle - planar or not.)

Chronology:
1. Chromatic Number

 (a) Heawood 1890, 5-color theorem
 For planar graphs
 (b) Grötzsch 1959, 3-color theorem
 For planar graphs of girth 4
 (c) Grünbaum 1962, 3-color theorem
 For planar graphs with at most 3 3-cycles
 (d) Appel, & Haken 1976, 4-color theorem
 For planar graphs
 (e) N. Robertson, D. P. Sanders, P. D. Seymour and R. Thomas, 1996,
 4-color theorem
 For planar graphs

2. List Coloring and Choice Number

 (a) Alon & Tarsi 1992, 3-choosable
 For planar and bipartite
 (b) Thomassen 1994, 5-choosable
 For planar graphs
 Implies (1a)
 (c) Thomassen 1995, 3-choosable,
 For planar graphs of girth 5
 Implies (1b)
 (d) Thomassen 2003, 3-choosable,
 For planar graphs of girth 5
 A short proof

Thomassen 5-color
1994 Thomassen

Theorem 2 If \(G \) is planar then the choice number is at most 5.

He proved something stronger:

Theorem 3 Let \(G \) be a connected planar with outercircuit \(C = (v_1, v_2, \ldots, v_k) \), and let \(L \) be a list assignment such that for \(v \in V(C) \), \(|L(v)| \geq 3 \) otherwise \(|L(v)| \geq 5 \). For any precoloring, \(c \), of the vertices \(v_1 \) and \(v_2 \), \(c \) can be extended to an \(L \)-coloring of \(G \).

Corollary 3.1 If \(G \) is an outerplanar graph then \(ch(G) \leq 3 \).

Notice that Theorem 3 implies Theorem 2.

Proof

We can assume \(G \) is inner triangulated.

Suppose \(G \) has a cut vertex....

Now we can assume the outercircuit \(C \) is a cycle.

If \(C \) has a chord......

If \(C \) does not have a chord.....

Thomassen’s implies Grotzsch

(A) Grotzsch: Every planar graph \(G \) of girth at least 4 is 3-colorable. Moreover, if \(G \) has an outer cycle of length 4 or 5 then any 3-coloring of the outer cycle can be extended to a 3-coloring of \(G \).

(B) Grotzsch’s girth 5 version: Every planar graph \(G \) of girth at least 5 is 3-colorable. Moreover, if \(G \) has an outer cycle of length 5 then any 3-coloring of the outer cycle can be extended to a 3-coloring of \(G \).
We will show (B) \iff (A).

Thomassen’s Long proof

Theorem 4 Let G be a planar graph of girth at least 5. Let A be a set of vertices in G such that each vertex of A is on the outer cycle. Assume that either

(i) $G(A)$ has no edge or

(ii) $G(A)$ has precisely one edge xy and G has no 2-path from x to a vertex of A.

Assume that L is a color assignment such that $|L(v)| \geq 2$ for each vertex in G and $|L(v)| \geq 3$ for each vertex in $V(G) \setminus A$. Let u, w be any adjacent vertices in G both on the outer face boundary and let $c(u), c(w)$ be distinct colors in $L(u)$ and $L(w)$ respectively. Then c can be extended to a list coloring of G.

Thomassen’s Short proof

Theorem 5 Let G be a plane graph of girth at least 5. Let c be a 3-coloring of a path or cycle $P : v_1, v_2, \ldots, v_q$, $1 \leq q \leq 6$ such that all vertices of P are on the outer face boundary.

For all $v \in V(G)$, let $L(v)$ be its list of colors. If $v \in P$ then $L(v) = \{c(v)\}$. Otherwise $|L(v)| \geq 2$. If v is not on the outer face boundary then $|L(v)| = 3$.

There are no edges joining vertices whose lists have at most 2 colors, except the edges of P.

Then c can be extended to an L-coloring of G.

Grotzsch’s girth 5 version

Notice that both of these imply Grotzsch’s girth 5 version.
We will show this later.

Grötzsch (B) ⇒ (A)

(A) Grotzsch: Every planar graph G of girth at least 4 is 3-colorable. Moreover, if G has an outer cycle of length 4 or 5 then any 3-coloring of the outer cycle can be extended to a 3-coloring of G.

(B) Grotzsch’s girth 5 version: Every planar graph G of girth at least 5 is 3-colorable. Moreover, if G has an outer cycle of length 5 then any 3-coloring of the outer cycle can be extended to a 3-coloring of G.

Use (B) to prove (A).

Grötzsch (B) ⇒ (A)

Proof by induction on $|V(G)|$.
If G has no 4 cycles then by (B) we are done.
Assume G has 4 cycles.
If G has a vertex v of degree at most 2, color $G - v$ by induction, and color v afterward with a color not used on either of its neighbors.
So assume all degrees are at least 3.
If G is disconnected, use induction on each component.
If G has a cut vertex v, such that $G - v$ has components, C_1, C_2, \ldots, C_k, color each of $C_i + v$ using induction then permute the colors if necessary so that v is colored the same in each.

Grötzsch (B) ⇒ (A)

Now we assume that G is 2-connected. So that every facial walk is a cycle.
Suppose the length of C is greater than 5. Then it is not precolored. We
find a facial cycle of length at most 5 and make that the outer cycle and precolor it.

We know there is a cycle of length 4 but need a facial cycle of length 4 or 5.

We know such a facial cycle exists by Euler’s formula and the fact that we know for all v, the degree of v is at least 3, as shown on next page

Grötzsch (B) ⇒ (A)

Let f be the number of faces, n the number of vertices, and e the number of edges.

$$\sum_{i=1}^{n} \deg(v_i) = 2e, \ 3n \leq 2e$$

$$n - e + f = 2, \ n = 2 - f + e$$

$$3(2 - f + e) \leq 2e, \ e \leq 3f - 6$$

But if $\forall i, \deg(f_i) \geq 6$ then

$$2e = \sum_{i=1}^{f} \deg(f_i) \geq 6f$$

and $e \geq 3f$. This is a contradiction. Grötzsch (B) ⇒ (A)

So we assume we have outer cycle C of length 4 or 5 and it is precolored.

Defn 11 A separating cycle is a cycle C in a plane embedding of a graph where both $ext(C)$ and $int(C)$ are non-empty.

If G has a separating 4 or 5 cycle C'. We color $ext(C') \cup C'$ first using induction then color $int(C') \cup C'$ by induction.

If G has a vertex joined to two vertices of C we precolor that vertex in $int(C)$ and use induction on the 2 parts.
Grötzsch (B) ⇒ (A)

If \(G \) has a facial 4-cycle distinct from \(C \), identify 2 opposite vertices and use induction to color the resulting graph, then reverse the process and the same color is valid for both of the original vertices.

Claim 1 If identifying the 2 opposite vertices causes a 3-cycle, then identifying the other 2 opposite vertices of the 4-cycle will not cause a 3-cycle.

Proof of Claim: Suppose the 4-cycle is \(u_1, u_2, u_3, u_4, u_1 \). If identifying \(u_1 \) and \(u_3 \) gives a 3-cycle it must involve the new vertex \(U \). Suppose then it is \(U, x_1, x_2, U \). It is clear that \(x_1, x_2, u_2, u_4 \) are 4 distinct vertices and both \(x_1 \) and \(x_2 \) are not adjacent to either of \(u_1 \) or \(u_3 \) since there are no 3-cycles in \(G \).

So without loss of generality, we must have in the original graph, the path: \(u_1, x_1, x_2, u_3 \). If we had instead joined together \(u_2 \) and \(u_4 \), we would be able to conclude that there is a path \(u_2, y_1, y_2, u_4 \). The vertices \(x_1, x_2, y_1 \) and \(y_2 \) are 4 distinct vertices. If any two were the same, there would be a triangle.

But now notice that we have a path from \(u_1 \) to \(u_3 \) and a path from \(u_2 \) to \(u_4 \) which are disjoint. Thus one must go through the interior of the cycle: \(u_1, u_2, u_3, u_4, u_1 \). But this cycle was chosen as a "facial" cycle, meaning its interior is empty. ♦

Notice that we cannot simply add 5th vertices to all the 4 cycles of \(G \) and apply (B).

Otherwise, we have no separating 4 cycle and no facial 4 cycle so, we can assume that \(C \) is the only 4-cycle. We CAN insert a new vertex on \(C \) and precolor it. Now we apply (B)