1. If G is Eulerian, show that $L(G)$, the line graph of G, is both Hamiltonian and Eulerian.

2. Prove that $R(3,4) = 9$.

3. (a) Name a graph with $\chi = 4$ and no K_3 subgraph.
 (b) Find a graph G such that $\chi(G) = \omega(G)$ but G is not perfect.

4. Find the exact crossing number of K_6.

5. Figure out minimum n such that K_n is not embeddable on the torus.

6. Find the characteristic polynomial for the adjacency matrix of $K_{n,m}$. What are the eigenvalues of $K_{n,m}$?